Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(18)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37764538

ABSTRACT

The ability to construct three-dimensional architectures via nanoscale engineering is important for emerging applications in sensors, catalysis, controlled drug delivery, microelectronics, and medical diagnostics nanotechnologies. Because of their well-defined and highly organized symmetric structures, viral plant capsids provide a 3D scaffold for the precise placement of functional inorganic particles yielding advanced hierarchical hybrid nanomaterials. In this study, we used turnip yellow mosaic virus (TYMV), grafting gold nanoparticles (AuNP) or iron oxide nanoparticles (IONP) onto its outer surface. It is the first time that such an assembly was obtained with IONP. After purification, the resulting nano-biohybrids were characterized by different technics (dynamic light scattering, transmission electron microcopy, X-ray photoelectron spectroscopy…), showing the robustness of the architectures and their colloidal stability in water. In-solution photothermal experiments were then successfully conducted on TYMV-AuNP and TYMV-IONP, the related nano-biohybrids, evidencing a net enhancement of the heating capability of these systems compared to their free NP counterparts. These results suggest that these virus-based materials could be used as photothermal therapeutic agents.

2.
RSC Adv ; 13(9): 6239-6245, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36825287

ABSTRACT

This paper describes the effective fabrication of an inverse opal (IO) structure for plasmon-induced hyperthermia applications using silver nanoparticles (AgNPs) doped in a conducting polymer of poly(3,4-ethylene dioxythiophene) (PEDOT). Indium tin oxide (ITO) substrates were firstly modified electrochemically by a layer of the inverse opal structure of PEDOT (IO-PEDOT). These as-prepared electrodes were subsequently used as working electrodes for electrodepositing AgNPs. The presence of plasmonic AgNPs doped inside a polymer network caused the hybrid of IO-PEDOT and AgNPs to generate significantly more heat than thin-film PEDOT, thin-film PEDOT/AgNPs, and IO-PEDOT under 532 nm laser irradiation. This is attributed to the synergistic effect of the large active area inverse opal structure and doped AgNPs, which exhibit more thermal energy and heat faster than the individual component structures. These findings point to a wide range of potential applications for hybrid IO-PEDOT/AgNPs in hyperthermia treatment.

3.
ChemMedChem ; 16(23): 3615-3625, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34523806

ABSTRACT

The multifunctional nano drug delivery system (MNDDS) has much revolutionized in cancer treatment, aiming to eliminate many disadvantages of conventional formulations. This paper herein proposes and demonstrates MNDDS inspired by poly(lactide)-tocopheryl polyethylene glycol succinate (PLA-TPGS) copolymer co-loaded Doxorubicin and magnetic iron oxide nanoparticles (MIONs) with a 1 : 1 (w/w) optimal ratio. In vitro drug release kinetics of Doxorubicin from this nanosystem fitted best to the Weibull kinetic model and can be described by the classical Fickian diffusion mechanism under acidic pH conditions. The combination of MIONs and Doxorubicin in the PLA-TPGS copolymer has maintained the fluorescence properties of Doxorubicin and good cell penetration, especially inside the nucleus and its vicinity. Moreover, different cell cycle profiles were observed in HeLa cell lines treated with MNDDSs.


Subject(s)
Antineoplastic Agents/pharmacology , Doxorubicin/pharmacology , Drug Carriers/chemistry , Magnetite Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Succinates/chemistry , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Doxorubicin/chemistry , Drug Liberation , Drug Screening Assays, Antitumor , G2 Phase Cell Cycle Checkpoints/drug effects , Heating , Humans , Kinetics , Magnetic Phenomena , Micelles
SELECTION OF CITATIONS
SEARCH DETAIL