Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Fluoresc ; 32(1): 307-318, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34787776

ABSTRACT

Coumarins are bioactive molecules that often serve as defenses in plant and animal systems, and understanding their fundamental behavior is essential for understanding their bioactivity. Aesculetin (6,7-dihydroxycoumarin) has recently attracted attention due to its ability to act as an antioxidant, but little is known about its photophysical properties. The fluorescence lifetimes of its neutral and anion form in water are 19 ± 2 ps and 2.3 ± 0.1 ns, respectively. Assuming the short lifetime of the neutral is determined by ESPT, we estimate kPT ~ 5 × 1010 s-1. Using steady-state and time-resolved fluorescence spectroscopy, we determine its ground and excited-state [Formula: see text] to be 7.3 and -1, respectively, making it one of the strongest photoacids of the natural coumarins. Aesculetin exhibits a strong pH dependence of the relative fluorescence quantum yield becoming much more fluorescent above [Formula: see text]. The aesculetin anion [Formula: see text] slightly photobasic character. We also report that aesculetin forms a fluorescent catechol-like complex with boric acid, and this complex has a [Formula: see text] of 5.6.


Subject(s)
Fluorescence , Spectrometry, Fluorescence/methods , Umbelliferones , Boric Acids/chemistry , Coumarins , Hydrogen-Ion Concentration , Photochemical Processes , Umbelliferones/chemistry , Water/chemistry
2.
J Fluoresc ; 30(1): 71-80, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31872306

ABSTRACT

Scopoletin is highly fluorescent in water and acts as a photoacid exhibiting excited-state proton transfer, ESPT, competitive with fluorescence. Its absorbance and emission spectral characteristics yield ground-state and excited-state pKa values of 7.4 ± 0.1 and 1.4 ± 0.1, respectively. The pKa* implies an ESPT rate constant an order of magnitude smaller than that for umbelliferone. This report provides quantum yield measurements in water that are comparable to quinine sulfate, and fluorescence lifetime values that are on a par with other similar coumarins yet provide insight into the ESPT process. The scopoletin anion is observed in tetrahydrofuran by reaction with a strong base. The Stokes shift of aqueous scopoletin is >100 nm in the pH range 3 to 7 due in part to its action as a photoacid. Modeling by density functional theory methods provides reasonable support for the experimental results.

SELECTION OF CITATIONS
SEARCH DETAIL