Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
PNAS Nexus ; 3(5): pgae187, 2024 May.
Article in English | MEDLINE | ID: mdl-38807632

ABSTRACT

Chronic and genetic kidney diseases such as autosomal dominant polycystic kidney disease (ADPKD) have few therapeutic options, and clinical trials testing small molecule drugs have been unfavorable due to low kidney bioavailability and adverse side effects. Although nanoparticles can be designed to deliver drugs directly to the diseased site, there are no kidney-targeted nanomedicines clinically available, and most FDA-approved nanoparticles are administered intravenously which is not ideal for chronic diseases. To meet these challenges of chronic diseases, we developed a biomaterials-based strategy using chitosan particles (CP) for oral delivery of therapeutic, kidney-targeting peptide amphiphile micelles (KMs). We hypothesized that encapsuling KMs into CP would enhance the bioavailability of KMs upon oral administration given the high stability of chitosan in acidic conditions and mucoadhesive properties enabling absorption within the intestines. To test this, we evaluated the mechanism of KM access to the kidneys via intravital imaging and investigated the KM biodistribution in a porcine model. Next, we loaded KMs carrying the ADPKD drug metformin into CP (KM-CP-met) and measured in vitro therapeutic effect. Upon oral administration in vivo, KM-CP-met showed significantly greater bioavailability and accumulation in the kidneys as compared to KM only or free drug. As such, KM-CP-met treatment in ADPKD mice (Pkd1fl/fl;Pax8-rtTA;Tet-O-Cre which develops the disease over 120 days and mimics the slow development of ADPKD) showed enhanced therapeutic efficacy without affecting safety despite repeated treatment. Herein, we demonstrate the potential of KM-CP as a nanomedicine strategy for oral delivery for the long-term treatment of chronic kidney diseases.

2.
Biomacromolecules ; 25(5): 2749-2761, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38652072

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) is a complex disorder characterized by uncontrolled renal cyst growth, leading to kidney function decline. The multifaceted nature of ADPKD suggests that single-pathway interventions using individual small molecule drugs may not be optimally effective. As such, a strategy encompassing combination therapy that addresses multiple ADPKD-associated signaling pathways could offer synergistic therapeutic results. However, severe off-targeting side effects of small molecule drugs pose a major hurdle to their clinical transition. To address this, we identified four drug candidates from ADPKD clinical trials, bardoxolone methyl (Bar), octreotide (Oct), salsalate (Sal), and pravastatin (Pra), and incorporated them into peptide amphiphile micelles containing the RGD peptide (GRGDSP), which binds to the basolateral surface of renal tubules via integrin receptors on the extracellular matrix. We hypothesized that encapsulating drug combinations into RGD micelles would enable targeting to the basolateral side of renal tubules, which is the site of disease, via renal secretion, leading to superior therapeutic benefits compared to free drugs. To test this, we first evaluated the synergistic effect of drug combinations using the 20% inhibitory concentration for each drug (IC20) on renal proximal tubule cells derived from Pkd1flox/-:TSLargeT mice. Next, we synthesized and characterized the RGD micelles encapsulated with drug combinations and measured their in vitro therapeutic effects via a 3D PKD growth model. Upon both IV and IP injections in vivo, RGD micelles showed a significantly higher accumulation in the kidneys compared to NT micelles, and the renal access of RGD micelles was significantly reduced after the inhibition of renal secretion. Specifically, both Bar+Oct and Bar+Sal in the RGD micelle treatment showed enhanced therapeutic efficacy in ADPKD mice (Pkd1fl/fl;Pax8-rtTA;Tet-O-Cre) with a significantly lower KW/BW ratio and cyst index as compared to PBS and free drug-treated controls, while other combinations did not show a significant difference. Hence, we demonstrate that renal targeting through basolateral targeting micelles enhances the therapeutic potential of combination therapy in genetic kidney disease.


Subject(s)
Drug Delivery Systems , Micelles , Animals , Mice , Drug Delivery Systems/methods , Humans , Polycystic Kidney, Autosomal Dominant/drug therapy , Polycystic Kidney, Autosomal Dominant/pathology , Oligopeptides/chemistry , Polycystic Kidney Diseases/drug therapy , Polycystic Kidney Diseases/pathology
3.
Cell Rep ; 43(2): 113704, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38265938

ABSTRACT

Leukemia-initiating cells (LICs) are regarded as the origin of leukemia relapse and therapeutic resistance. Identifying direct stemness determinants that fuel LIC self-renewal is critical for developing targeted approaches. Here, we show that the RNA-editing enzyme ADAR1 is a crucial stemness factor that promotes LIC self-renewal by attenuating aberrant double-stranded RNA (dsRNA) sensing. Elevated adenosine-to-inosine editing is a common attribute of relapsed T cell acute lymphoblastic leukemia (T-ALL) regardless of molecular subtype. Consequently, knockdown of ADAR1 severely inhibits LIC self-renewal capacity and prolongs survival in T-ALL patient-derived xenograft models. Mechanistically, ADAR1 directs hyper-editing of immunogenic dsRNA to avoid detection by the innate immune sensor melanoma differentiation-associated protein 5 (MDA5). Moreover, we uncover that the cell-intrinsic level of MDA5 dictates the dependency on the ADAR1-MDA5 axis in T-ALL. Collectively, our results show that ADAR1 functions as a self-renewal factor that limits the sensing of endogenous dsRNA. Thus, targeting ADAR1 presents an effective therapeutic strategy for eliminating T-ALL LICs.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , RNA, Double-Stranded , Humans , Chronic Disease , RNA Editing , T-Lymphocytes
4.
Am J Otolaryngol ; 45(2): 104186, 2024.
Article in English | MEDLINE | ID: mdl-38101136

ABSTRACT

INTRODUCTION: Acute otitis media is one of the most common reasons for pediatric medical visits in the United States. Additionally, past studies have linked food insecurity and malnutrition with increased infections and worse health outcomes. However, there is a lack of information on the risk factors for food insecurity in specific patient populations, including the pediatric recurrent acute otitis media (RAOM) population. METHODS: The 2011 to 2018 National Health Interview Survey (NHIS) datasets were used to obtain a national estimate of the presentation of food insecurity within pediatric patients with RAOM. Relevant sociodemographic information and prevalence were identified. A multivariable logistic regression model was used to determine sociodemographic risk factors. Calculations were conducted using R with the "survey" package to account for the clustering and sampling of the NHIS. RESULTS: Of 3844 children with RAOM who responded to the food insecurity module, 20.8 % (19.0-22.6 %) were food insecure. Age, race/ethnicity, percentage of federal poverty level status, insurance status, and self-reported health status were significant and were not independent of food insecurity status. Using multivariable regression, this study found the following sociodemographic risk factors: age 6-10 and age > 10 (reference: age 0-2); Black (reference: Non-Hispanic White); 100 % to 200 % and <100 % federal poverty level (reference: >200 % federal poverty level); public insurance or uninsured status (reference: private insurance); and poor to fair self-reported health status (reference: good to excellent). DISCUSSION: Children with RAOM who were older, Black, less insured, living in lower-income households, and of poorer health had a greater association with being food insecure. Due to the frequency of RAOM pediatric visits, identifying at-risk groups as well as incorporating food insecurity screening and food referral programs within clinical practice can enable otolaryngologists to reduce disparities and improve outcomes in a targeted approach.


Subject(s)
Ethnicity , Otitis Media , Child , Humans , United States/epidemiology , Infant, Newborn , Infant , Child, Preschool , Poverty , Otitis Media/epidemiology , Risk Factors , Food Insecurity
5.
Res Sq ; 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37398458

ABSTRACT

Leukemia initiating cells (LICs) are regarded as the origin of leukemia relapse and therapeutic resistance. Identifying direct stemness determinants that fuel LIC self-renewal is critical for developing targeted approaches to eliminate LICs and prevent relapse. Here, we show that the RNA editing enzyme ADAR1 is a crucial stemness factor that promotes LIC self-renewal by attenuating aberrant double-stranded RNA (dsRNA) sensing. Elevated adenosine-to-inosine (A-to-I) editing is a common attribute of relapsed T-ALL regardless of molecular subtypes. Consequently, knockdown of ADAR1 severely inhibits LIC self-renewal capacity and prolongs survival in T-ALL PDX models. Mechanistically, ADAR1 directs hyper-editing of immunogenic dsRNA and retains unedited nuclear dsRNA to avoid detection by the innate immune sensor MDA5. Moreover, we uncovered that the cell intrinsic level of MDA5 dictates the dependency on ADAR1-MDA5 axis in T-ALL. Collectively, our results show that ADAR1 functions as a self-renewal factor that limits the sensing of endogenous dsRNA. Thus, targeting ADAR1 presents a safe and effective therapeutic strategy for eliminating T-ALL LICs.

6.
Cell Rep Med ; 4(3): 100962, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36889320

ABSTRACT

Pediatric acute myeloid leukemia (pAML) is typified by high relapse rates and a relative paucity of somatic DNA mutations. Although seminal studies show that splicing factor mutations and mis-splicing fuel therapy-resistant leukemia stem cell (LSC) generation in adults, splicing deregulation has not been extensively studied in pAML. Herein, we describe single-cell proteogenomics analyses, transcriptome-wide analyses of FACS-purified hematopoietic stem and progenitor cells followed by differential splicing analyses, dual-fluorescence lentiviral splicing reporter assays, and the potential of a selective splicing modulator, Rebecsinib, in pAML. Using these methods, we discover transcriptomic splicing deregulation typified by differential exon usage. In addition, we discover downregulation of splicing regulator RBFOX2 and CD47 splice isoform upregulation. Importantly, splicing deregulation in pAML induces a therapeutic vulnerability to Rebecsinib in survival, self-renewal, and lentiviral splicing reporter assays. Taken together, the detection and targeting of splicing deregulation represent a potentially clinically tractable strategy for pAML therapy.


Subject(s)
Leukemia, Myeloid, Acute , Stem Cells , Adult , Child , Humans , RNA Splicing/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Protein Isoforms/genetics , Mutation , RNA Splicing Factors/genetics , Repressor Proteins/genetics
7.
Cell Stem Cell ; 30(3): 250-263.e6, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36803553

ABSTRACT

Adenosine deaminase acting on RNA1 (ADAR1) preserves genomic integrity by preventing retroviral integration and retrotransposition during stress responses. However, inflammatory-microenvironment-induced ADAR1p110 to p150 splice isoform switching drives cancer stem cell (CSC) generation and therapeutic resistance in 20 malignancies. Previously, predicting and preventing ADAR1p150-mediated malignant RNA editing represented a significant challenge. Thus, we developed lentiviral ADAR1 and splicing reporters for non-invasive detection of splicing-mediated ADAR1 adenosine-to-inosine (A-to-I) RNA editing activation; a quantitative ADAR1p150 intracellular flow cytometric assay; a selective small-molecule inhibitor of splicing-mediated ADAR1 activation, Rebecsinib, which inhibits leukemia stem cell (LSC) self-renewal and prolongs humanized LSC mouse model survival at doses that spare normal hematopoietic stem and progenitor cells (HSPCs); and pre-IND studies showing favorable Rebecsinib toxicokinetic and pharmacodynamic (TK/PD) properties. Together, these results lay the foundation for developing Rebecsinib as a clinical ADAR1p150 antagonist aimed at obviating malignant microenvironment-driven LSC generation.


Subject(s)
Adenosine Deaminase , Hematopoietic Stem Cells , Mice , Animals , Protein Isoforms , Adenosine Deaminase/genetics
8.
Front Mol Biosci ; 9: 1001941, 2022.
Article in English | MEDLINE | ID: mdl-36504724

ABSTRACT

ADPKD has few therapeutic options. Tolvaptan slows disease but has side effects limiting its tolerability. Bempedoic acid (BA), an ATP citrate-lyase (ACLY) inhibitor FDA-approved for hypercholesterolemia, catalyzes a key step in fatty acid/sterol synthesis important for cell proliferation. BA is activated by very long-chain acyl-CoA synthetase (FATP2) expressed primarily in kidney and liver. BA also activates AMPK. We hypothesized that BA could be a novel ADPKD therapy by inhibiting cyst growth, proliferation, injury, and metabolic dysregulation via ACLY inhibition and AMPK activation. Pkd1-null kidney cell lines derived from mouse proximal tubule (PT) and collecting duct (IMCD) were grown in 2D or 3D Matrigel cultures and treated ± BA, ± SB-204990 (another ACLY inhibitor) or with Acly shRNA before cyst analysis, immunoblotting or mitochondrial assays using MitoSox and MitoTracker staining. Pkd1 fl/fl ; Pax8-rtTA; Tet-O-Cre C57BL/6J mice were induced with doxycycline injection on postnatal days 10 and 11 (P10-P11) and then treated ± BA (30 mg/kg/d) ± tolvaptan (30-100 mg/kg/d) by gavage from P12-21. Disease severity was determined by % total-kidney-weight-to-bodyweight (%TKW/BW) and BUN levels at euthanasia (P22). Kidney and liver homogenates were immunoblotted for expression of key biomarkers. ACLY expression and activity were upregulated in Pkd1-null PT and IMCD-derived cells vs. controls. Relative to controls, both BA and SB-204990 inhibited cystic growth in Pkd1-null kidney cells, as did Acly knockdown. BA inhibited mitochondrial superoxide production and promoted mitochondrial elongation, suggesting improved mitochondrial function. In ADPKD mice, BA reduced %TKW/BW and BUN to a similar extent as tolvaptan vs. untreated controls. Addition of BA to tolvaptan caused a further reduction in %TKW/BW and BUN vs. tolvaptan alone. BA generally reduced ACLY and stimulated AMPK activity in kidneys and livers vs. controls. BA also inhibited mTOR and ERK signaling and reduced kidney injury markers. In liver, BA treatment, both alone and together with tolvaptan, increased mitochondrial biogenesis while inhibiting apoptosis. We conclude that BA and ACLY inhibition inhibited cyst growth in vitro, and BA decreased ADPKD severity in vivo. Combining BA with tolvaptan further improved various ADPKD disease parameters. Repurposing BA may be a promising new ADPKD therapy, having beneficial effects alone and along with tolvaptan.

9.
Am J Physiol Renal Physiol ; 322(1): F27-F41, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34806449

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD), caused by mutations in the polycystin 1 (PKD1) or polycystin 2 genes, presents with progressive development of kidney cysts and eventual end-stage kidney disease with limited treatment options. Previous work has shown that metformin reduces cyst growth in rapid ADPKD mouse models via inhibition of cystic fibrosis transmembrane conductance regulator-mediated fluid secretion, mammalian target of rapamycin, and cAMP pathways. The present study importantly tested the effectiveness of metformin as a therapy for ADPKD in a more clinically relevant Pkd1RC/RC mouse model, homozygous for the R3277C knockin point mutation in the Pkd1 gene. This mutation causes ADPKD in humans. Pkd1RC/RC male and female mice, which have a slow progression to end-stage kidney disease, received metformin (300 mg/kg/day in drinking water vs. water alone) from 3 to 9 or 12 mo of age. As previously reported, Pkd1RC/RC females had a more severe disease phenotype as compared with males. Metformin treatment reduced the ratio of total kidney weight-to-body weight relative to age-matched and sex-matched untreated controls at both 9 and 12 mo and reduced the cystic index in females at 9 mo. Metformin also increased glomerular filtration rate, lowered systolic blood pressure, improved anemia, and lowered blood urea nitrogen levels relative to controls in both sexes. Moreover, metformin reduced gene expression of key inflammatory markers and both gene and protein expression of kidney injury marker-1 and cyclin-dependent kinase-1 versus untreated controls. Altogether, these findings suggest several beneficial effects of metformin in this highly relevant slowly progressive ADPKD mouse model, which may help inform new ADPKD therapies in patients.NEW & NOTEWORTHY Metformin treatment improved ADPKD disease severity in a relevant, slowly progressive ADPKD mouse model that recapitulates a PKD-associated PKD1 mutation. Relative to controls, metformin reduced kidney weight/body weight, cystic index and BUN levels, while improving GFR, blood pressure and anemia. Metformin also reduced key inflammatory and injury markers, along with cell proliferation markers. These findings suggest several beneficial effects of metformin in this ADPKD mouse model, which may help inform new ADPKD therapies in patients.


Subject(s)
Kidney Failure, Chronic/prevention & control , Kidney/drug effects , Metformin/pharmacology , Polycystic Kidney, Autosomal Dominant/drug therapy , Renal Agents/pharmacology , Animals , Cell Proliferation/drug effects , Disease Models, Animal , Disease Progression , Female , Genetic Predisposition to Disease , Glomerular Filtration Rate/drug effects , Inflammation Mediators/metabolism , Kidney/metabolism , Kidney/pathology , Kidney/physiopathology , Kidney Failure, Chronic/metabolism , Kidney Failure, Chronic/pathology , Kidney Failure, Chronic/physiopathology , Male , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Transgenic , Mutation , Polycystic Kidney, Autosomal Dominant/metabolism , Polycystic Kidney, Autosomal Dominant/pathology , Polycystic Kidney, Autosomal Dominant/physiopathology , TRPP Cation Channels/genetics , Time Factors
10.
JHEP Rep ; 3(6): 100367, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34825154

ABSTRACT

BACKGROUND & AIMS: Uncertainties exist surrounding the timing of liver transplantation (LT) among patients with acute-on-chronic liver failure grade 3 (ACLF-3), regarding whether to accept a marginal quality donor organ to allow for earlier LT or wait for either an optimal organ offer or improvement in the number of organ failures, in order to increase post-LT survival. METHODS: We created a Markov decision process model to determine the optimal timing of LT among patients with ACLF-3 within 7 days of listing, to maximize overall 1-year survival probability. RESULTS: We analyzed 6 groups of candidates with ACLF-3: patients age ≤60 or >60 years, patients with 3 organ failures alone or 4-6 organ failures, and hepatic or extrahepatic ACLF-3. Among all groups, LT yielded significantly greater overall survival probability vs. remaining on the waiting list for even 1 additional day (p <0.001), regardless of organ quality. Creation of 2-way sensitivity analyses, with variation in the probability of receiving an optimal organ and expected post-transplant mortality, indicated that overall survival is maximized by earlier LT, particularly among candidates >60 years old or with 4-6 organ failures. The probability of improvement from ACLF-3 to ACLF-2 does not influence these recommendations, as the likelihood of organ recovery was less than 10%. CONCLUSION: During the first week after listing for patients with ACLF-3, earlier LT in general is favored over waiting for an optimal quality donor organ or for recovery of organ failures, with the understanding that the analysis is limited to consideration of only these 3 variables. LAY SUMMARY: In the setting of grade 3 acute-on-chronic liver failure (ACLF-3), questions remain regarding the timing of transplantation in terms of whether to proceed with liver transplantation with a marginal donor organ or to wait for an optimal liver, and whether to transplant a patient with ACLF-3 or wait until improvement to ACLF-2. In this study, we used a Markov decision process model to demonstrate that earlier transplantation of patients listed with ACLF-3 maximizes overall survival, as opposed to waiting for an optimal donor organ or for improvement in the number of organ failures.

11.
Cell Rep ; 34(4): 108670, 2021 01 26.
Article in English | MEDLINE | ID: mdl-33503434

ABSTRACT

Inflammation-dependent base deaminases promote therapeutic resistance in many malignancies. However, their roles in human pre-leukemia stem cell (pre-LSC) evolution to acute myeloid leukemia stem cells (LSCs) had not been elucidated. Comparative whole-genome and whole-transcriptome sequencing analyses of FACS-purified pre-LSCs from myeloproliferative neoplasm (MPN) patients reveal APOBEC3C upregulation, an increased C-to-T mutational burden, and hematopoietic stem and progenitor cell (HSPC) proliferation during progression, which can be recapitulated by lentiviral APOBEC3C overexpression. In pre-LSCs, inflammatory splice isoform overexpression coincides with APOBEC3C upregulation and ADAR1p150-induced A-to-I RNA hyper-editing. Pre-LSC evolution to LSCs is marked by STAT3 editing, STAT3ß isoform switching, elevated phospho-STAT3, and increased ADAR1p150 expression, which can be prevented by JAK2/STAT3 inhibition with ruxolitinib or fedratinib or lentiviral ADAR1 shRNA knockdown. Conversely, lentiviral ADAR1p150 expression enhances pre-LSC replating and STAT3 splice isoform switching. Thus, pre-LSC evolution to LSCs is fueled by primate-specific APOBEC3C-induced pre-LSC proliferation and ADAR1-mediated splicing deregulation.


Subject(s)
Inflammation/immunology , Leukemia, Myeloid, Acute/physiopathology , Cell Proliferation , Humans , Neoplastic Stem Cells/metabolism
12.
J Control Release ; 329: 1198-1209, 2021 01 10.
Article in English | MEDLINE | ID: mdl-33127449

ABSTRACT

Nanoparticle drug delivery has many advantages over small molecule therapeutics, including reducing off-target side effects and increasing drug potency. However, many nanoparticles are administered parenterally, which is challenging for chronic diseases such as polycystic kidney disease (PKD), the most common hereditary disease worldwide in which patients need continuous treatment over decades. To address this clinical need, we present the development of nanoparticles synthesized from chitosan, a widely available polymer chosen for its ability to improve oral bioavailability. Specifically, we optimized the synthesis parameters of chitosan nanoparticles and demonstrate mucoadhesion and permeation across an intestinal barrier model in vitro. Furthermore, when administered orally to mice, ex vivo imaging of rhodamine-loaded chitosan nanoparticles showed significantly higher accumulation in the intestines compared to the free model drug, as well as 1.3 times higher serum area under the curve (AUC), demonstrating controlled release and improved serum delivery over 24 h. To test its utility for chronic diseases such as PKD, we loaded the candidate PKD drug, metformin, into chitosan nanoparticles, and upon oral administration to a PKD murine model (Pkd1fl/fl;Pax8-rtTA;Tet-O cre), a lower cyst burden was observed compared to free metformin, and was well tolerated upon repeated dosages. Blood urea nitrogen (BUN) and creatinine levels were similar to untreated mice, demonstrating kidney and biocompatibility health. Our study builds upon previous chitosan-based drug delivery approaches, and demonstrates a novel, oral nanoformulation for PKD.


Subject(s)
Chitosan , Metformin , Nanoparticles , Polycystic Kidney Diseases , Administration, Oral , Animals , Drug Carriers , Drug Delivery Systems , Humans , Mice
13.
Front Public Health ; 9: 751828, 2021.
Article in English | MEDLINE | ID: mdl-34976918

ABSTRACT

Introduction: Despite growing recognition of hearing loss as a risk factor for late life cognitive disorders, sex and gender analysis of this association has been limited. Elucidating this is one means to advocate for holistic medicine by considering the psychosocial attributes of people. With a composite Gender Score (GS), we aimed to assess this among aging participants (50+) from the 2016 Health and Retirement Study (HRS) cohort. Methods: The GS was derived from gender-related variables in HRS by factor analyses and logistic regression, ranging from 0 (toward masculinity) to 100 (toward femininity). GS tertiles were also used to indicate three gender types (GS tertile 1: lower GS indicates masculinity; GS tertile 2: middle GS indicates androgyny; GS tertile 3: higher GS indicates femininity). Univariate followed by multiple logistic regressions were used to estimate the Odds Ratio (OR) and 95% confidence intervals (CI) of cognitive impairment (assessed by adapted Telephone Interview for Cognitive Status) from hearing acuity, as well as to explore the interactions of sex and gender with hearing acuity. The risk of cognitive impairment among hearing-impaired participants was assessed using multivariable models including sex and gender as exposure variables. Results: Five variables (taking risks, loneliness, housework, drinking, and depression) were retained to compute the GS for each participant. The distribution of GS between sexes partly overlapped. After adjusting for confounding factors, the OR for cognitive impairment associated with hearing impairment was significantly higher (OR = 1.65, 95% CI: 1.26, 2.15), and this association was not modified by female sex (OR = 0.77, 95% CI: 0.46, 1.27), but by androgynous gender (OR = 0.44, 95% CI: 0.24, 0.81). In the multivariable models for participants with hearing impairment, androgynous and feminine gender, as opposed to female sex, was associated with lower odds of cognitive impairment (OR of GS tertile 2 = 0.59, 95% CI: 0.41, 0.84; OR of GS tertile 3 = 0.60, 95% CI: 0.41, 0.87; OR of female sex = 0.78, 95% CI: 0.57, 1.08). Conclusions: Hearing impairment was associated with cognitive impairment among older people, and this association may be attenuated by a more feminine GS.


Subject(s)
Hearing Loss , Aged , Cognition , Female , Femininity , Hearing Loss/epidemiology , Humans , Male , Retirement
14.
Anal Chem ; 92(11): 7683-7689, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32352281

ABSTRACT

Molecular sensors from protein engineering offer new methods to sensitively bind to and detect target analytes for a wide range of applications. For example, these sensors can be integrated into probes for implantation, and then yield new and valuable physiological information. Here, a new Förster resonance energy transfer (FRET)-based sensor is integrated with an optical fiber to yield a device measuring free Ca2+. This membrane encapsulated optical fiber (MEOF) device is composed of a sensor matrix that fills poly(tetrafluoroethylene) (PTFE) with an engineered troponin C (TnC) protein fused to a pair of FRET fluorophores. The FRET efficiency is modulated upon Ca2+ ion binding. The probe further comprises a second, size-excluding filter membrane that is synthesized by filling the pores of a PTFE matrix with a poly(ethylene glycol) dimethacrylate (PEGDMA) hydrogel; this design ensures protection from circulating proteases and the foreign body response. The two membranes are stacked and placed on a thin, silica optical fiber for optical excitation and detection. Results show the biosensor responds to changes in Ca2+ concentration within minutes with a sensitivity ranging from 0.01 to 10 mM Ca2+, allowing discrimination of hyper- and hypocalcemia. Furthermore, the system reversibly binds Ca2+ to allow continuous monitoring. This work paves the way for the use of engineered structure-switching proteins for continuous optical monitoring in a large number of applications.


Subject(s)
Calcium/analysis , Fluorescence Resonance Energy Transfer , Troponin C/metabolism , Animals , Batrachoidiformes/metabolism , Calcium/metabolism , Photochemical Processes , Proteolysis , Troponin C/chemistry
15.
Cancer Cell ; 35(1): 81-94.e7, 2019 01 14.
Article in English | MEDLINE | ID: mdl-30612940

ABSTRACT

Adenosine deaminase associated with RNA1 (ADAR1) deregulation contributes to therapeutic resistance in many malignancies. Here we show that ADAR1-induced hyper-editing in normal human hematopoietic progenitors impairs miR-26a maturation, which represses CDKN1A expression indirectly via EZH2, thereby accelerating cell-cycle transit. However, in blast crisis chronic myeloid leukemia progenitors, loss of EZH2 expression and increased CDKN1A oppose cell-cycle transit. Moreover, A-to-I editing of both the MDM2 regulatory microRNA and its binding site within the 3' UTR region stabilizes MDM2 transcripts, thereby enhancing blast crisis progenitor propagation. These data reveal a dual mechanism governing malignant transformation of progenitors that is predicated on hyper-editing of cell-cycle-regulatory miRNAs and the 3' UTR binding site of tumor suppressor miRNAs.


Subject(s)
Adenosine Deaminase/genetics , Blast Crisis/genetics , Cyclin-Dependent Kinase Inhibitor p21/genetics , Enhancer of Zeste Homolog 2 Protein/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , MicroRNAs/genetics , Proto-Oncogene Proteins c-mdm2/genetics , RNA-Binding Proteins/genetics , 3' Untranslated Regions , Animals , Cell Cycle , Female , Gene Editing , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , HEK293 Cells , Humans , K562 Cells , Male , Mice , Neoplasm Transplantation
16.
Nat Commun ; 9(1): 1007, 2018 03 08.
Article in English | MEDLINE | ID: mdl-29520015

ABSTRACT

Dominant mutations in glycyl-tRNA synthetase (GlyRS) cause a subtype of Charcot-Marie-Tooth neuropathy (CMT2D). Although previous studies have shown that GlyRS mutants aberrantly interact with Nrp1, giving insight into the disease's specific effects on motor neurons, these cannot explain length-dependent axonal degeneration. Here, we report that GlyRS mutants interact aberrantly with HDAC6 and stimulate its deacetylase activity on α-tubulin. A decrease in α-tubulin acetylation and deficits in axonal transport are observed in mice peripheral nerves prior to disease onset. An HDAC6 inhibitor used to restore α-tubulin acetylation rescues axonal transport deficits and improves motor functions of CMT2D mice. These results link the aberrant GlyRS-HDAC6 interaction to CMT2D pathology and suggest HDAC6 as an effective therapeutic target. Moreover, the HDAC6 interaction differs from Nrp1 interaction among GlyRS mutants and correlates with divergent clinical presentations, indicating the existence of multiple and different mechanisms in CMT2D.


Subject(s)
Axonal Transport/genetics , Axons/metabolism , Charcot-Marie-Tooth Disease/pathology , Glycine-tRNA Ligase/metabolism , Histone Deacetylase 6/metabolism , Motor Neurons/metabolism , Acetylation , Animals , Axonal Transport/drug effects , Charcot-Marie-Tooth Disease/genetics , Disease Models, Animal , Female , Glycine-tRNA Ligase/genetics , HEK293 Cells , Histone Deacetylase 6/antagonists & inhibitors , Humans , Hydroxamic Acids/pharmacology , Indoles/pharmacology , Male , Mice , Mice, Inbred C57BL , Mutation , Nerve Tissue Proteins/metabolism , Neuropilin-1/metabolism , Peripheral Nerves/metabolism , Tubulin/metabolism
17.
Sci Rep ; 8(1): 2137, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29391476

ABSTRACT

Impaired hearing and cognition are disabling conditions among older adults. Research has presented inconsistent conclusions regarding hearing impairment posing a risk for cognitive impairment. We aimed to assess this from published evidence via searching PubMed and Embase, from the inception of the databases indexed to December 2, 2016. For those high-quality studies retrieved, relative risk (RR) and 95% confidence intervals (CIs) were combined to estimate the risk of cognitive impairment. Eleven cohort studies were included in the present study. Pooled results found that elderly people with disabled peripheral and central hearing function had a higher risk of cognitive impairment (for moderate/severe peripheral hearing impairment: RR = 1.29, 95% CI: 1.04-1.59 during a follow-up ≤6 years. RR = 1.57, 95% CI: 1.13-2.20 during a follow-up >6 years; for severe central hearing impairment, RR = 3.21, 95% CI: 1.19-8.69) compared to those with normal hearing function. We also recorded a dose-response trend for cognitive impairment as hearing thresholds rose. No evident bias from potential confounding factors was found with one exception: the length for clinical follow-up. Although results are preliminary because qualifying studies were few, statistical findings were consistent with older people identified as having greater levels of hearing loss, having a corresponding higher risk of cognitive impairment.


Subject(s)
Cognitive Dysfunction/etiology , Hearing Loss/complications , Adult , Cohort Studies , Humans , Prognosis
18.
JCI Insight ; 1(17): e87877, 2016 Oct 20.
Article in English | MEDLINE | ID: mdl-27777973

ABSTRACT

To derive new insights in diabetic complications, we integrated publicly available human protein-protein interaction (PPI) networks with global metabolic networks using metabolomic data from patients with diabetic nephropathy. We focused on the participating proteins in the network that were computationally predicted to connect the urine metabolites. MDM2 had the highest significant number of PPI connections. As validation, significant downregulation of MDM2 gene expression was found in both glomerular and tubulointerstitial compartments of kidney biopsy tissue from 2 independent cohorts of patients with diabetic nephropathy. In diabetic mice, chemical inhibition of MDM2 with Nutlin-3a led to reduction in the number of podocytes, increased blood urea nitrogen, and increased mortality. Addition of Nutlin-3a decreased WT1+ cells in embryonic kidneys. Both podocyte- and tubule-specific MDM2-knockout mice exhibited severe glomerular and tubular dysfunction, respectively. Interestingly, the only 2 metabolites that were reduced in both podocyte and tubule-specific MDM2-knockout mice were 3-methylcrotonylglycine and uracil, both of which were also reduced in human diabetic kidney disease. Thus, our bioinformatics tool combined with multi-omics studies identified an important functional role for MDM2 in glomeruli and tubules of the diabetic nephropathic kidney and links MDM2 to a reduction in 2 key metabolite biomarkers.


Subject(s)
Diabetic Nephropathies/metabolism , Proto-Oncogene Proteins c-mdm2/metabolism , Systems Biology , Albuminuria , Animals , Computational Biology , Diabetes Mellitus, Experimental/metabolism , Humans , Kidney Glomerulus/physiopathology , Kidney Tubules/physiopathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Podocytes
19.
J Am Soc Nephrol ; 27(2): 466-81, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26203118

ABSTRACT

The NADPH oxidase (NOX) isoform NOX4 has been linked with diabetic kidney disease (DKD). However, a mechanistic understanding of the downstream effects of NOX4 remains to be established. We report that podocyte-specific induction of NOX4 in vivo was sufficient to recapitulate the characteristic glomerular changes noted with DKD, including glomerular hypertrophy, mesangial matrix accumulation, glomerular basement membrane thickening, albuminuria, and podocyte dropout. Intervention with a NOX1/NOX4 inhibitor reduced albuminuria, glomerular hypertrophy, and mesangial matrix accumulation in the F1 Akita model of DKD. Metabolomic analyses from these mouse studies revealed that tricarboxylic acid (TCA) cycle-related urinary metabolites were increased in DKD, but fumarate levels were uniquely reduced by the NOX1/NOX4 inhibitor. Expression of fumarate hydratase (FH), which regulates urine fumarate accumulation, was reduced in the diabetic kidney (in mouse and human tissue), and administration of the NOX1/NOX4 inhibitor increased glomerular FH levels in diabetic mice. Induction of Nox4 in vitro and in the podocyte-specific NOX4 transgenic mouse led to reduced FH levels. In vitro, fumarate stimulated endoplasmic reticulum stress, matrix gene expression, and expression of hypoxia-inducible factor-1α (HIF-1α) and TGF-ß. Similar upregulation of renal HIF-1α and TGF-ß expression was observed in NOX4 transgenic mice and diabetic mice and was attenuated by NOX1/NOX4 inhibition in diabetic mice. In conclusion, NOX4 is a major mediator of diabetes-associated glomerular dysfunction through targeting of renal FH, which increases fumarate levels. Fumarate is therefore a key link connecting metabolic pathways to DKD pathogenesis, and measuring urinary fumarate levels may have application for monitoring renal NOX4 activity.


Subject(s)
Diabetic Nephropathies/metabolism , Fumarate Hydratase/physiology , Metabolomics , NADPH Oxidases/physiology , Animals , Male , Mice , Mice, Inbred C57BL , NADPH Oxidase 4
20.
Development ; 140(10): 2130-8, 2013 May.
Article in English | MEDLINE | ID: mdl-23633510

ABSTRACT

Limb development relies on an exquisite coordination between growth and patterning, but the underlying mechanisms remain elusive. Anterior-posterior and proximal-distal specification initiates in early limb bud concomitantly with the proliferative expansion of limb cells. Previous studies have shown that limb bud growth initially relies on fibroblast growth factors (FGFs) produced in the apical ectodermal ridge (AER-FGFs), the maintenance of which relies on a positive-feedback loop involving sonic hedgehog (Shh) and the BMP antagonist gremlin 1 (Grem1). The positive cross-regulation between Shh and the HoxA and HoxD clustered genes identified an indirect effect of Hox genes on the maintenance of AER-FGFs but the respective function of Shh and Hox genes in this process remains unknown. Here, by uncoupling Hox and Shh function, we show that HoxA and HoxD genes are required for proper AER-FGFs expression, independently of their function in controlling Shh expression. In addition, we provide evidence that the Hox-dependent control of AER-FGF expression is achieved through the regulation of key mesenchymal signals, namely Grem1 and Fgf10, ensuring proper epithelial-mesenchymal interactions. Notably, HoxA and HoxD genes contribute to both the initial activation of Grem1 and the subsequent anterior expansion of its expression domain. We propose that the intricate interactions between Hox genes and the FGF and Shh signaling pathways act as a molecular network that ensures proper limb bud growth and patterning, probably contributing to the coordination of these two processes.


Subject(s)
Extremities/embryology , Gene Expression Regulation, Developmental , Hedgehog Proteins/metabolism , Homeodomain Proteins/metabolism , Alleles , Animals , Down-Regulation , Fibroblast Growth Factor 10/metabolism , Fibroblast Growth Factor 8/metabolism , In Situ Hybridization , Intercellular Signaling Peptides and Proteins/metabolism , Kruppel-Like Transcription Factors/metabolism , Mice , Mice, Transgenic , Multigene Family , Mutation , Nerve Tissue Proteins/metabolism , Tomography , Zinc Finger Protein Gli3
SELECTION OF CITATIONS
SEARCH DETAIL
...