Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Small Methods ; : e2400797, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39082067

ABSTRACT

Hydrogen peroxide (H2O2) production via oxygen (O2) reduction reaction (ORR) in pure water (H2O) through graphitic carbon nitrides (g-C3N4)-based piezo-photocatalysts is an exciting approach in many current studies. However, the low Lewis-acid properties of g-C3N4 limited the catalytic performance because of the low O2 adsorption efficacy. To overcome this challenge, the interaction of g-C3N4 precursors with various solvents are utilized to synthesize g-C3N4, possessing multiple nitrogen-vacant species via thermal shocking polymerization. These results suggest that the lack of nitrogen in g-C3N4 and the incident introduction of oxygen-functional groups enhance the Lewis acid-base interactions and polarize the g-C3N4 lattices, leading to the enormous enhancement. Furthermore, the catalytic mechanisms are thoroughly studied, with the formation of H2O2 proceeding via radical and water oxidation pathways, in which the roles of light and ultrasound are carefully investigated. Thus, these findings not only reinforce the potential view of metal-free photocatalysts, accelerating the understanding of g-C3N4 working principles to generate H2O2 based on the oxygen reduction and water oxidation reactions, but also propose a facile one-step way for fabricating highly efficient and scalable photocatalysts to produce H2O2 without using sacrificial agents, pushing the practical application of in situ solar H2O2 toward real-world scenarios.

2.
ACS Appl Mater Interfaces ; 16(22): 29421-29438, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38776481

ABSTRACT

2D/2D step-scheme (S-scheme) piezo-photocatalysts for the production of fine chemicals, such as hydrogen peroxide (H2O2), have attracted significant attention of global scientists owing to the efficiency in utilizing surface piezoelectric effects from 2D materials to overcome rapid charge recombination in photocatalytic processes. In this research, we reported the fabrication of 2D S-doped VOx deposited on 2D g-C3N4 to produce H2O2 via the piezo-photocatalytic process with high production yields at 20.19 mmol g-1 h-1, which was 1.75 and 4.87 times higher than that from solely piezo-catalytic and photocatalytic H2O2 generation. The finding pointed out that adding sulfur (S) to VOx can help to improve the catalytic outcomes by modifying the electronic properties of pristine VOx. In addition, when coupled with g-C3N4, the presence of S limits the formation of graphene in the VOx/g-C3N4 composites, causing shielding effects and pushing the cascade reactions toward water generation in the materials. Besides, the research also sheds light on the charge transport between g-C3N4 and S-VOx under irradiation and how the composites work to trigger the formation of H2O2. The presence of S in the composite systems enhances charge transfer between two semiconductors by strengthening the internal electric fields (IEF) to drive electrons moving in one direction, as demonstrated by density functional theory (DFT) calculations. Moreover, the formation of H2O2 significantly relies on the reduction of oxygen to generate oxygenic radical species at the g-C3N4 sites. Meanwhile, S-VOx provides oxidative sites in the composites to oxidize water molecules to directly or indirectly generate H2O2 or O2, which will further participate in the reactions to produce the final products. This study confirms the validation of S-scheme piezo-photocatalysts, thus encouraging further research on developing heterojunction materials with high catalytic efficiency, which can be used in practical conditions.

3.
Beilstein J Nanotechnol ; 13: 1141-1154, 2022.
Article in English | MEDLINE | ID: mdl-36320428

ABSTRACT

Nitric oxide (NO) is an air pollutant impacting the environment, human health, and other biotas. Among the technologies to treat NO pollution, photocatalytic oxidation under visible light is considered an effective means. This study describes photocatalytic oxidation to degrade NO under visible light with the support of a photocatalyst. MgO@g-C3N4 heterojunction photocatalysts were synthesized by one-step pyrolysis of MgO and urea at 550 °C for two hours. The photocatalytic NO removal efficiency of the MgO@g-C3N4 heterojunctions was significantly improved and reached a maximum value of 75.4% under visible light irradiation. Differential reflectance spectroscopy (DRS) was used to determine the optical properties and bandgap energies of the material. The bandgap of the material decreases with increasing amounts of MgO. The photoluminescence spectra indicate that the recombination of electron-hole pairs is hindered by doping MgO onto g-C3N4. Also, NO conversion, DeNOx index, apparent quantum efficiency, trapping tests, and electron spin resonance measurements were carried out to understand the photocatalytic mechanism of the materials. The high reusability of the MgO@g-C3N4 heterojunction was shown by a five-cycle recycling test. This study provides a simple way to synthesize photocatalytic heterojunction materials with high reusability and the potential of heterojunction photocatalysts in the field of environmental remediation.

4.
ACS Omega ; 6(41): 27379-27386, 2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34693158

ABSTRACT

Photocatalysis has been studied and considered as a green and practical approach in addressing environmental pollution. However, factors that affect photocatalytic performance have not been systematically studied. In this work, we have presented a comprehensive roadmap for characterizing, interpreting, and reporting semiconductors' electrical and optical properties through routinely used techniques such as diffuse reflectance spectroscopy, electrochemical techniques (Mott-Schottky plots), photoluminescence, X-ray photoelectron spectroscopy, and ultraviolet photoelectron spectroscopy in the context of photocatalysis. Having precisely studied the band structure of three representative photocatalysts, we have presented and highlighted the essential information and details, which are critical and beneficial for studies of (1) band alignments, (2) redox potentials, and (3) defects. Further works with a comprehensive understanding of the band structure are desirable and hold great promise.

SELECTION OF CITATIONS
SEARCH DETAIL