Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 902: 166111, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37567299

ABSTRACT

Shrimp farming has strongly developed in recent years, and became an important economic sector that helps create jobs and increase incomes for Vietnamese. However, the aquatic environment has also been greatly affected by the development due to the amount of wastewater discharged from shrimp farms. Among biological processes used for treating shrimp farming wastewater, the application of microalgae-bacteria co-culture is considered high potential due to its treatment and energy saving. Consequently, a photobioreactor operated with microalgae-bacteria co-culture was employed to treat shrimp farming wastewater. The salinity of wastewater and the operating condition (ratio of biomass retention time and hydraulic retention time, BRT/HRT) are the major factors affecting pollutant removal. Thus, this study investigated the effects of salinities of 0.5-20 ppt and BRT/HRT ratios of 1.5-16 on the removal performance. The results indicated that the nutrient removal was reduced when PBR operated under salinity over than 10 ppt and BRT/HRT over 5.5. Particularly, the nitrogen and phosphorus removal rates were achieved 6.56 ± 1.33 gN m-3 d-1 and 1.49 ± 0.59 gP m-3 d-1, and the removal rates decreased by 2-4 times under a salinity >10 ppt and 2-6 times under a BRT/HRT ratio >5.5. Whereas, organic matter treatment seems not to be affected when the removal rate was maintained at 28-34 gCOD m-3 d-1 under various conditions.


Subject(s)
Microalgae , Wastewater , Symbiosis , Salinity , Bacteria , Agriculture , Biomass , Nitrogen/analysis , Phosphorus
2.
Bioresour Technol ; 375: 128830, 2023 May.
Article in English | MEDLINE | ID: mdl-36878373

ABSTRACT

To address the origins of ocean acidification, seaweed aquaculture is emerging as a key biosequestration strategy. Nevertheless, seaweed biomass is involved in developing food and animal feed, whereas seaweed waste from commercial hydrocolloid extraction is dumped in landfills, which together limit the carbon cycle and carbon sequestration. This work sought to evaluate the production, properties, and applications of seaweed compost and biochar to strengthen the "carbon sink" implications of aquaculture sectors. Due to their unique characteristics, the production of seaweed-derived biochar and compost, as well as their existing applications, are distinct when compared to terrestrial biomass. This paper outlines the benefits of composting and biochar production as well as proposes ideas and perspectives to overcome technical shortcomings. If properly synchronized, progression in the aquaculture sector, composting, and biochar production, potentially promote various Sustainable Development Goals.


Subject(s)
Composting , Seaweed , Animals , Soil , Hydrogen-Ion Concentration , Seawater , Charcoal , Vegetables
3.
Bioresour Technol ; 351: 127000, 2022 May.
Article in English | MEDLINE | ID: mdl-35292387

ABSTRACT

Conventional biological treatment has been reported to be ineffective for pollutant removal in tannery wastewater due to high salinity. To overcome it, this work used salt-tolerant bacteria (STB) isolated from a membrane bioreactor to evaluate the organic and nutrient removal through a series of batch experiments. Compared with the control, the STB reactor enhanced the reduction of persistent organics by 11% based on the double exponential decay model. Besides, the removal of NH4+-N is 26% higher, satisfying the first-order decay model. The nitrification was inhibited entirely in control during 48 h, whilst the assimilation process involved 55% of total nitrogen removal. In the STB reactor, nitrification occurred after 12 h, resulting in significantly increased NO2--N and NO3--N concentrations according to the logistic function. Although nitrification was successfully activated, C/N ratios and free ammonia were identified as limiting factors for STB activity, requiring mitigation strategies in further studies.


Subject(s)
Nitrosomonas , Water Purification , Ammonia , Bioreactors , Kinetics , Nitrification , Nitrites , Nitrobacter , Nitrogen , Nonlinear Dynamics , Wastewater
4.
J Nanosci Nanotechnol ; 15(9): 6568-75, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26716213

ABSTRACT

We report an electrochemical synthesis of homogeneous and well-aligned ZnO nanorods (NRs) on transparent conducting aluminium-doped zinc oxide (AZO) thin films as electrodes. The selected ZnO NRs was then chemically corroded in HCl and KCl aqueous solutions to form nanopencils (NPs), and nanotubes (NTs), respectively. A DC magnetron sputtering was employed to fabricate AZO thin films at various thicknesses. The obtained AZO thin films have a c-direction orientation, transmittance above 80% in visible region, and sheet resistance approximately 40 Ω/sq. They are considered to be relevant as electrodes and seeding layers for electrochemical. The ZnO NRs are directly grown on the AZOs without a need of catalysts or additional seeding layers at temperature as low as 85 degrees C. Their shapes are strongly associated with the AZO thickness that provides a valuable way to control the diameter of ZnO NRs grown atop. With the addition of HCI and KCl aqueous solutions, ZnO NRs were modified their shape to NPs and NTs with the reaction time, respectively. All the ZnO NRs, NPs, and NTs are preferred to grow along c-direction that indicates a lattice matching between AZO thin films and ZnO nanostructrures. Photoluminescence spectra and XRD patterns show that they have good crystallinities. A great photocatalytic activity of ZnO nanostructures promises potential application in environmental treatment and protection. The ZnO NTs exhibits a higher photocatalysis than others possibly due to the oxygen vacancies on the surface and the polarizability of Zn2+ and O2-.

SELECTION OF CITATIONS
SEARCH DETAIL
...