Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Infect Dev Ctries ; 18(8): 1212-1219, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39288395

ABSTRACT

INTRODUCTION: In the fight against virus-caused pandemics like COVID-19, diagnostic tests based on RT-qPCR are essential, but they are sometimes limited by their dependence on expensive, specialized equipment and skilled personnel. Consequently, an alternative nucleic acid detection technique that overcomes these restrictions, called loop-mediated isothermal amplification following reverse transcription (RT-LAMP), has been broadly investigated. Nevertheless, the developed RT-LAMP assays for SARS-CoV-2 detection still require laboratory devices and electrical power, limiting their widespread use as rapid home tests. This work developed a flexible RT-LAMP assay that gets beyond the drawbacks of the available isothermal LAMP-based SARS-CoV-2 detection, establishing a simple and effective at-home diagnostic tool for COVID-19. METHODOLOGY: A multiplex direct RT-LAMP assay, modified from the previously developed test was applied to simultaneously identify the two genes of SARS-CoV-2. We used a colorimetric readout, lyophilized reagents, and benchmarked an electro-free and micropipette-free method that enables sensitive and specific detection of SARS-CoV-2 in home settings. RESULTS: Forty-one nasopharyngeal swab samples were tested using the developed home-testing RT-LAMP (HT-LAMP) assay, showing 100% agreement with the RT-qPCR results. CONCLUSIONS: This is the first electrically independent RT-LAMP assay successfully developed for SARS-CoV-2 detection in a home setting. Our HT-LAMP assay is thus an important development for diagnosing COVID-19 or any other infectious pandemic on a population scale.


Subject(s)
COVID-19 , Colorimetry , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , SARS-CoV-2 , Sensitivity and Specificity , Humans , COVID-19/diagnosis , Nucleic Acid Amplification Techniques/methods , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Colorimetry/methods , Molecular Diagnostic Techniques/methods , COVID-19 Nucleic Acid Testing/methods , RNA, Viral/analysis , RNA, Viral/genetics , RNA, Viral/isolation & purification , Nasopharynx/virology
2.
Arch Virol ; 169(5): 87, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38565796

ABSTRACT

Surveillance of the SARS-CoV-2 genome has become a crucial technique in the management of COVID-19, aiding the pandemic response and supporting effective public health interventions. Typically, whole-genomic sequencing is used along with PCR-based target enrichment techniques to identify SARS-CoV-2 variants, which is a complicated and time-consuming process that requires central laboratory facilities. Thus, there is an urgent need to develop rapid and cost-effective tools for precise on-site detection and identification of SARS-CoV-2 strains. In this study, we demonstrate the rapid diagnosis of COVID-19 and identification of SARS-CoV-2 variants by amplification and sequencing of the entire SARS-CoV-2 S gene using isothermal enzymatic recombinase amplification combined with the advanced Oxford nanopore sequencing technique. The entire procedure, from sampling to sequencing, takes less than 8 hours and can be performed with limited resources. The newly developed method has noteworthy implications for examining the transmission dynamics of the virus, detecting novel genetic variants, and assessing the effect of mutations on diagnostic approaches, antiviral treatments, and vaccines.


Subject(s)
COVID-19 , Nanopore Sequencing , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19 Testing
3.
Mol Biol Res Commun ; 11(1): 1-10, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35463821

ABSTRACT

Food and beverage poisoning is detrimental to people's health since it can lead to fever, stomachaches, and even death. To rapidly detect the presence of foodborne pathogens, conventional PCR assays are currently widely employed. Meanwhile, isothermal PCR methods, in which the amplification reactions take place at a low and constant temperature, have lately emerged as effective and alternative means for quickly identifying pathogens in low-resource settings. Staphylococcus aureus and Pseudomonas aeruginosa are two of the most concerning foodborne bacterial infections. In this work, an isothermal PCR assay based on the Recombinase Polymerase Amplification (RPA) method was developed to simultaneously detect S. aureus and P. aeruginosa with high sensitivity and specificity. The limit of detection for multiplex RPA was 10 and 30 fg/reaction of S. aureus and P. aeruginosa genomic DNA, respectively. Furthermore, the reaction time was reduced to only 25 minutes, with a low incubation temperature of 39°C. Multiplex RPA reactions, in particular, were successful in directly identifying as low as 1 and 5 CFU/reaction of S. aureus and P. aeruginosa cells, respectively, without the need for DNA genome extraction. Moreover, the multiplex RPA reliably detected the two foodborne bacteria in milk, fruit juice, and bottled water samples. In conclusion, the direct multiplex RPA reported in this work offers a quick, easy, sensitive, and effective alternative approach for detecting the presence of S. aureus and P. aeruginosa without the requirement of a pricey instrument or highly-trained personnel.

SELECTION OF CITATIONS
SEARCH DETAIL