Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Am J Physiol Renal Physiol ; 291(4): F833-9, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16670435

ABSTRACT

Pendrin, encoded by Slc26a4, is a Cl(-)/HCO(3)(-) exchanger expressed in the apical region of type B and non-A, non-B intercalated cells, which regulates renal NaCl excretion. Dietary Cl(-) restriction upregulates total pendrin protein expression. Whether the subcellular expression of pendrin and whether the apparent vascular volume contraction observed in Slc26a4 null mice are Cl(-) dependent, but Na(+) independent, is unknown. Thus the subcellular distribution of pendrin and its role in acid-base and fluid balance were explored using immunogold cytochemistry and balance studies of mice ingesting a NaCl-replete or a Na(+)-replete, Cl(-)-restricted diet, achieved through substitution of NaCl with NaHCO(3). Boundary length and apical plasma membrane pendrin label density each increased by approximately 60-70% in type B intercalated cells, but not in non-A, non-B cells, whereas cytoplasmic pendrin immunolabel increased approximately 60% in non-A, non-B intercalated cells, but not in type B cells. Following either NaCl restriction or Cl(-) restriction alone, Slc26a4 null mice excreted more Cl(-) and had a higher arterial pH than pair-fed wild-type mice. In conclusion, 1) following dietary Cl(-) restriction, apical plasma membrane pendrin immunolabel increases in type B intercalated cells, but not in non-A, non-B intercalated cells; and 2) pendrin participates in the regulation of renal Cl(-) excretion and arterial pH during dietary Cl(-) restriction.


Subject(s)
Anion Transport Proteins/genetics , Chlorides/pharmacology , Diet, Sodium-Restricted , Kidney/physiology , Aldosterone/urine , Animals , Anion Transport Proteins/deficiency , Blood Gas Analysis , Blood Pressure , Cell Membrane/physiology , Diet , Hydrogen-Ion Concentration , Male , Mice , Mice, Knockout , Sulfate Transporters , Urine/chemistry
2.
Am J Physiol Renal Physiol ; 290(2): F409-16, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16159893

ABSTRACT

NKCC1 null mice are hypotensive, in part, from the absence of NKCC1-mediated vasoconstriction. Whether these mice have renal defects in NaCl and water handling which contribute to the hypotension is unexplored. Therefore, we asked 1) whether NKCC1 (-/-) mice have a defect in the regulation of NaCl and water balance, which might contribute to the observed hypotension and 2) whether the hypotension observed in these mice is accompanied by endocrine abnormalities and/or downregulation of renal Na+ transporter expression. Thus we performed balance studies, semiquantitative immunoblotting, and immunohistochemistry of kidney tissue from NKCC1 (+/+) and NKCC1 (-/-) mice which consumed either a high (2.8% NaCl)- or a low-NaCl (0.01% NaCl) diet for 7 days. Blood pressure was lower in NKCC1 (-/-) than NKCC1 (+/+) mice following either high or low dietary NaCl intake. Relative to wild-type mice, NKCC1 null mice had a lower plasma ANP concentration, a higher plasma renin and a higher serum K+ concentration with inappropriately low urinary K+ excretion, although serum aldosterone was either the same or only slightly increased in the mutant mice. Expression of NHE3, the alpha-subunit of the Na-K-ATPase, NCC, and NKCC2 were higher in NKCC1 null than in wild-type mice, although differences were generally greater during NaCl restriction. NKCC1 null mice had a reduced capacity to excrete free water than wild-type mice, which resulted in hypochloremia following the NaCl-deficient diet. Hypochloremia did not occur from increased aquaporin-1 (AQP1) or 2 protein expression or from redistribution of AQP2 to the apical regions of principal cells. Instead, NKCC1 null mice had a blunted increase in urinary osmolality following vasopressin administration, which should increase free water excretion and attenuate the hypochloremia. In conclusion, aldosterone release is inappropriately low in NKCC1 null mice. Moreover, the action of aldosterone and vasopressin is altered within kidneys of NKCC1 null mice, which likely contributes to their hypotension. Increased Na+ transporter expression, increased plasma renin, and reduced plasma ANP, as observed in NKCC1 null mice, should increase vascular volume and blood pressure, thus minimizing hypotension.


Subject(s)
Hypotension/physiopathology , Kidney/metabolism , Sodium-Potassium-Chloride Symporters/physiology , Aldosterone/blood , Animals , Chlorides/blood , Chlorides/urine , Hypotension/genetics , Mice , Mice, Transgenic , Organ Size , Renin/blood , Renin/metabolism , Sodium Channels/metabolism , Sodium, Dietary/pharmacology , Sodium-Potassium-Chloride Symporters/genetics , Solute Carrier Family 12, Member 2 , Vasopressins/metabolism , Water/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL