Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Med Phys ; 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39250658

ABSTRACT

BACKGROUND: Ablation zone segmentation in contrast-enhanced computed tomography (CECT) images enables the quantitative assessment of treatment success in the ablation of liver lesions. However, fully automatic liver ablation zone segmentation in CT images still remains challenging, such as low accuracy and time-consuming manual refinement of the incorrect regions. PURPOSE: Therefore, in this study, we developed a semi-automatic technique to address the remaining drawbacks and improve the accuracy of the liver ablation zone segmentation in the CT images. METHODS: Our approach uses a combination of a CNN-based automatic segmentation method and an interactive CNN-based segmentation method. First, automatic segmentation is applied for coarse ablation zone segmentation in the whole CT image. Human experts then visually validate the segmentation results. If there are errors in the coarse segmentation, local corrections can be performed on each slice via an interactive CNN-based segmentation method. The models were trained and the proposed method was evaluated using two internal datasets of post-interventional CECT images ( n 1 $n_{1}$ = 22, n 2 $n_{2}$ = 145; 62 patients in total) and then further tested using an external benchmark dataset ( n 3 $n_{3}$ = 12; 10 patients). RESULTS: To evaluate the accuracy of the proposed approach, we used Dice similarity coefficient (DSC), average symmetric surface distance (ASSD), Hausdorff distance (HD), and volume difference (VD). The quantitative evaluation results show that the proposed approach obtained mean DSC, ASSD, HD, and VD scores of 94.0%, 0.4 mm, 8.4 mm, 0.02, respectively, on the internal dataset, and 87.8%, 0.9 mm, 9.5 mm, and -0.03, respectively, on the benchmark dataset. We also compared the performance of the proposed approach to that of five well-known segmentation methods; the proposed semi-automatic method achieved state-of-the-art performance on ablation segmentation accuracy, and on average, 2 min are required to correct the segmentation. Furthermore, we found that the accuracy of the proposed method on the benchmark dataset is comparable to that of manual segmentation by human experts ( p $p$ = 0.55, t $t$ -test). CONCLUSIONS: The proposed semi-automatic CNN-based segmentation method can be used to effectively segment the ablation zones, increasing the value of CECT for an assessment of treatment success. For reproducibility, the trained models, source code, and demonstration tool are publicly available at https://github.com/lqanh11/Interactive_AblationZone_Segmentation.

2.
Med Image Anal ; 96: 103212, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38830326

ABSTRACT

Deformable image registration is an essential component of medical image analysis and plays an irreplaceable role in clinical practice. In recent years, deep learning-based registration methods have demonstrated significant improvements in convenience, robustness and execution time compared to traditional algorithms. However, registering images with large displacements, such as those of the liver organ, remains underexplored and challenging. In this study, we present a novel convolutional neural network (CNN)-based unsupervised learning registration method, Cascaded Multi-scale Spatial-Channel Attention-guided Network (CMAN), which addresses the challenge of large deformation fields using a double coarse-to-fine registration approach. The main contributions of CMAN include: (i) local coarse-to-fine registration in the base network, which generates the displacement field for each resolution and progressively propagates these local deformations as auxiliary information for the final deformation field; (ii) global coarse-to-fine registration, which stacks multiple base networks for sequential warping, thereby incorporating richer multi-layer contextual details into the final deformation field; (iii) integration of the spatial-channel attention module in the decoder stage, which better highlights important features and improves the quality of feature maps. The proposed network was trained using two public datasets and evaluated on another public dataset as well as a private dataset across several experimental scenarios. We compared CMAN with four state-of-the-art CNN-based registration methods and two well-known traditional algorithms. The results show that the proposed double coarse-to-fine registration strategy outperforms other methods in most registration evaluation metrics. In conclusion, CMAN can effectively handle the large-deformation registration problem and show potential for application in clinical practice. The source code is made publicly available at https://github.com/LocPham263/CMAN.git.


Subject(s)
Imaging, Three-Dimensional , Liver , Neural Networks, Computer , Tomography, X-Ray Computed , Humans , Tomography, X-Ray Computed/methods , Liver/diagnostic imaging , Imaging, Three-Dimensional/methods , Algorithms , Deep Learning , Radiographic Image Interpretation, Computer-Assisted/methods
3.
Comput Methods Programs Biomed ; 233: 107453, 2023 May.
Article in English | MEDLINE | ID: mdl-36921463

ABSTRACT

PURPOSE: Selective internal radiation therapy (SIRT) has been proven to be an effective treatment for hepatocellular carcinoma (HCC) patients. In clinical practice, the treatment planning for SIRT using 90Y microspheres requires estimation of the liver-lung shunt fraction (LSF) to avoid radiation pneumonitis. Currently, the manual segmentation method to draw a region of interest (ROI) of the liver and lung in 2D planar imaging of 99mTc-MAA and 3D SPECT/CT images is inconvenient, time-consuming and observer-dependent. In this study, we propose and evaluate a nearly automatic method for LSF quantification using 3D SPECT/CT images, offering improved performance compared with the current manual segmentation method. METHODS: We retrospectively acquired 3D SPECT with non-contrast-enhanced CT images (nCECT) of 60 HCC patients from a SPECT/CT scanning machine, along with the corresponding diagnostic contrast-enhanced CT images (CECT). Our approach for LSF quantification is to use CNN-based methods for liver and lung segmentations in the nCECT image. We first apply 3D ResUnet to coarsely segment the liver. If the liver segmentation contains a large error, we dilate the coarse liver segmentation into the liver mask as a ROI in the nCECT image. Subsequently, non-rigid registration is applied to deform the liver in the CECT image to fit that obtained in the nCECT image. The final liver segmentation is obtained by segmenting the liver in the deformed CECT image using nnU-Net. In addition, the lung segmentations are obtained using 2D ResUnet. Finally, LSF quantitation is performed based on the number of counts in the SPECT image inside the segmentations. Evaluations and Results: To evaluate the liver segmentation accuracy, we used Dice similarity coefficient (DSC), asymmetric surface distance (ASSD), and max surface distance (MSD) and compared the proposed method to five well-known CNN-based methods for liver segmentation. Furthermore, the LSF error obtained by the proposed method was compared to a state-of-the-art method, modified Deepmedic, and the LSF quantifications obtained by manual segmentation. The results show that the proposed method achieved a DSC score for the liver segmentation that is comparable to other state-of-the-art methods, with an average of 0.93, and the highest consistency in segmentation accuracy, yielding a standard deviation of the DSC score of 0.01. The proposed method also obtains the lowest ASSD and MSD scores on average (2.6 mm and 31.5 mm, respectively). Moreover, for the proposed method, a median LSF error of 0.14% is obtained, which is a statically significant improvement to the state-of-the-art-method (p=0.004), and is much smaller than the median error in LSF manual determination by the medical experts using 2D planar image (1.74% and p<0.001). CONCLUSIONS: A method for LSF quantification using 3D SPECT/CT images based on CNNs and non-rigid registration was proposed, evaluated and compared to state-of-the-art techniques. The proposed method can quantitatively determine the LSF with high accuracy and has the potential to be applied in clinical practice.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/radiotherapy , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/radiotherapy , Retrospective Studies , Single Photon Emission Computed Tomography Computed Tomography , Lung/diagnostic imaging , Image Processing, Computer-Assisted/methods
SELECTION OF CITATIONS
SEARCH DETAIL