Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 7(1): 34, 2024 01 05.
Article in English | MEDLINE | ID: mdl-38182732

ABSTRACT

SNARE-mediated vesicular transport is thought to play roles in photoreceptor glutamate exocytosis and photopigment delivery. However, the functions of Synaptosomal-associated protein (SNAP) isoforms in photoreceptors are unknown. Here, we revisit the expression of SNAP-23 and SNAP-25 and generate photoreceptor-specific knockout mice to investigate their roles. Although we find that SNAP-23 shows weak mRNA expression in photoreceptors, SNAP-23 removal does not affect retinal morphology or vision. SNAP-25 mRNA is developmentally regulated and undergoes mRNA trafficking to photoreceptor inner segments at postnatal day 9 (P9). SNAP-25 knockout photoreceptors develop normally until P9 but degenerate by P14 resulting in severe retinal thinning. Photoreceptor loss in SNAP-25 knockout mice is associated with abolished electroretinograms and vision loss. We find mistrafficked photopigments, enlarged synaptic vesicles, and abnormal synaptic ribbons which potentially underlie photoreceptor degeneration. Our results conclude that SNAP-25, but not SNAP-23, mediates photopigment delivery and synaptic functioning required for photoreceptor development, survival, and function.


Subject(s)
Photoreceptor Cells, Vertebrate , Qb-SNARE Proteins , Qc-SNARE Proteins , Synaptosomal-Associated Protein 25 , Animals , Mice , Biological Transport , Cytoskeleton , Glutamic Acid , Mice, Knockout , RNA, Messenger , Qb-SNARE Proteins/metabolism , Qc-SNARE Proteins/metabolism , Synaptosomal-Associated Protein 25/metabolism , Photoreceptor Cells, Vertebrate/cytology , Photoreceptor Cells, Vertebrate/metabolism
2.
Proc Natl Acad Sci U S A ; 120(42): e2308204120, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37812728

ABSTRACT

Migration is essential for the laminar stratification and connectivity of neurons in the central nervous system. In the retina, photoreceptors (PRs) migrate to positions according to birthdate, with early-born cells localizing to the basal-most side of the outer nuclear layer. It was proposed that apical progenitor mitoses physically drive these basal translocations non-cell autonomously, but direct evidence is lacking, and whether other mechanisms participate is unknown. Here, combining loss- or gain-of-function assays to manipulate cell cycle regulators (Sonic hedgehog, Cdkn1a/p21) with an in vivo lentiviral labelling strategy, we demonstrate that progenitor division is one of two forces driving basal translocation of rod soma. Indeed, replacing Shh activity rescues abnormal rod translocation in retinal explants. Unexpectedly, we show that rod differentiation also promotes rod soma translocation. While outer segment function or formation is dispensable, Crx and SNARE-dependent synaptic function are essential. Thus, both non-cell and cell autonomous mechanisms underpin PR soma sublaminar positioning in the mammalian retina.


Subject(s)
Neurosecretion , Retinal Rod Photoreceptor Cells , Animals , Retinal Rod Photoreceptor Cells/metabolism , Hedgehog Proteins/metabolism , Retina/metabolism , Cell Differentiation , Mammals
SELECTION OF CITATIONS
SEARCH DETAIL
...