Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
ACS Omega ; 8(31): 28733-28748, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37576624

ABSTRACT

Improving lipophilicity for drugs to penetrate the lipid membrane and decreasing bacterial and fungal coinfections for patients with cancer pose challenges in the drug development process. Here, a series of new N-alkylated-2-(substituted phenyl)-1H-benzimidazole derivatives were synthesized and characterized by 1H and 13C NMR, FTIR, and HRMS spectrum analyses to address these difficulties. All the compounds were evaluated for their antiproliferative, antibacterial, and antifungal activities. Results indicated that compound 2g exhibited the best antiproliferative activity against the MDA-MB-231 cell line and also displayed significant inhibition at minimal inhibitory concentration (MIC) values of 8, 4, and 4 µg mL-1 against Streptococcus faecalis, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus compared with amikacin. The antifungal data of compounds 1b, 1c, 2e, and 2g revealed their moderate activities toward Candida albicans and Aspergillus niger, with MIC values of 64 µg mL-1 for both strains. Finally, the molecular docking study found that 2g interacted with crucial amino acids in the binding site of complex dihydrofolate reductase with nicotinamide adenine dinucleotide phosphate.

2.
Adv Exp Med Biol ; 1083: 1-17, 2018.
Article in English | MEDLINE | ID: mdl-28687961

ABSTRACT

Cell migration and molecular mechanisms during healing of damaged vascular or muscle tissues are emerging fields of interest worldwide. The study herein focuses on evaluating the role of allogenic adipose-derived mesenchymal stem cells (ADMSCs) in restoring damaged tissues. Using a hindlimb ischemic mouse model, ADMSC-mediated induction of cell migration and gene expression related to myocyte regeneration and angiogenesis were evaluated. ADMSCs were labeled with GFP (ADMSC-GFP). The proximal end of the femoral blood vessel of mice (over 6 months of age) are ligated at two positions then cut between the two ties. Hindlimb ischemic mice were randomly divided into two groups: Group I (n = 30) which was injected with PBS (100 µL) and Group II (n = 30) which was transplanted with ADMSC-GFP (106 cells/100 µL PBS) at the rectus femoris muscle. The migration of ADMSC-GFP in hindlimb was analyzed by UV-Vis system. The expression of genes related to angiogenesis and muscle tissue repair was quantified by real-time RT-PCR. The results showed that ADMSCs existed in the grafted hindlimb for 7 days. Grafted cells migrated to other damaged areas such as thigh and heel. In both groups the ischemic hindlimb showed an increased expression of several angiogenic genes, including Flt-1, Flk-1, and Ang-2. In particular, the expression of Ang-2 and myogenic-related gene MyoD was significantly increased in the ADMSC-treated group compared to the PBS-treated (control) group; the expression increased at day 28 compared to day 3. The other factors, such as VE-Cadherin, HGF, CD31, Myf5, and TGF-ß, were also more highly expressed in the ADMSC-treated group than in the control group. Thus, grafted ADMSCs were able to migrate to other areas in the injured hindlimb, persist for approximately 7 days, and have a significantly positive impact on stimulating expression of myogenic- and angiogenesis-related genes.


Subject(s)
Ischemia/therapy , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Neovascularization, Physiologic , Adipose Tissue/cytology , Animals , Hindlimb , Mice , Random Allocation
3.
Cytotechnology ; 69(5): 801-814, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28466428

ABSTRACT

Ischemia are common conditions related to lack of blood supply to tissues. Depending on the ischemic sites, ischemia can cause different diseases, such as hindlimb ischemia, heart infarction and stroke. This study aims to evaluate how extracellular vesicles (EVs) derived from ETV2 transfected fibroblasts affect endothelial cell proliferation and neovascularization in a murine model of hindlimb ischemia. Human fibroblasts were isolated and cultured under standard conditions and expanded to the 3th passage before use in experiments. Human fibroblasts were transduced with a viral vector containing the ETV2 gene. Transduced cells were selected by puromycin treatment. These cells were further cultured for collection of EVs, which were isolated from culture supernatant. Following co-culture with endothelial cells, EVs were evaluated for their effect on endothelial cell proliferation and were directly injected into ischemic tissues of a murine model of hindlimb ischemia. The results showed that EVs could induce endothelial cell proliferation in vitro and improved neovascularization in a murine model of hindlimb ischemia. Our results suggest that EVs derived from ETV2-transfected fibroblasts can be promising non-cellular products for the regeneration of blood vessels.

4.
In Vitro Cell Dev Biol Anim ; 53(7): 616-625, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28424975

ABSTRACT

Ischemia is the reduction of blood flow to tissues by injury of blood vessels. Depending on the sites of tissues and grade of ischemia, ischemia can cause many serious complications. This study aimed to evaluate the effects of the E-twenty six (ETS) factor Ets variant 2 (ETV2) gene expression in angiogenesis and the effect of ETV2 gene therapy in a mouse model of hindlimb ischemia. The role of ETV2 on endothelial cell proliferation was evaluated in vitro. Knockdown of ETV2 expression was done using short hairpin RNA (shRNA) lentiviral viral particles. The ETV2 viral vector was injected into the skeletal muscles at the ligated and burned sites of the hindlimb and evaluated for its efficacy as a gene therapy modality for ischemia. Vascular regeneration in mice was indirectly evaluated by changes in mouse survival, necrotic grades of the leg, normal blood oxygen saturation level (SpO2), and blood flow by trypan blue injection assay. Preliminary data showed that ETV2 expression played a role in angiogenesis of endothelial cells. ETV2 overexpression could trigger and stimulate proliferation of skeletal endothelial cells. In vivo knockdown of ETV2 expression inhibited the auto-recovery of ischemic hindlimb, while overexpression of ETV2 helped to rescue leg loss and reduce necrosis, significantly improving angiogenesis in hindlimb ischemia. Our findings demonstrate that ETV2 gene therapy is a potentially effective modality for vascular regeneration.


Subject(s)
Endothelial Cells/metabolism , Endothelial Cells/pathology , Hindlimb/blood supply , Hindlimb/pathology , Ischemia/pathology , Transcription Factors/metabolism , Acute Disease , Animals , Cell Hypoxia , Cell Proliferation , Cell Separation , Cells, Cultured , Disease Models, Animal , Ischemia/metabolism , Lentivirus/metabolism , Mice , Muscles/pathology , Necrosis
5.
Stem Cells Transl Med ; 6(1): 187-195, 2017 01.
Article in English | MEDLINE | ID: mdl-28170179

ABSTRACT

Osteoarthritis (OA) is a degenerative cartilage disease that is characterized by a local inflammatory reaction. Consequently, many studies have been performed to identify suitable prevention and treatment interventions. In recent years, both arthroscopic microfracture (AM) and stem cell therapy have been used clinically to treat OA. This study aimed to evaluate the clinical effects of AM in the presence and absence of a stromal vascular fraction (SVF) injection in the management of patients with OA. Thirty patients with grade 2 or 3 (Lawrence scale) OA of the knee participated in this study. Placebo group patients (n = 15) received AM alone; treatment group patients (n = 15) received AM and an adipose tissue-derived SVF injection. The SVF was suspended in platelet-rich plasma (PRP) before injection into the joint. Patient groups were monitored and scored with the Western Ontario and McMaster Universities Arthritis Index (WOMAC), Lysholm, Visual Analog Pain Scale (VAS), and modified Outerbridge classifications before treatment and at 6, 12, and 18 months post-treatment. Bone marrow edema was also assessed at these time points. Patients were evaluated for knee activity (joint motion amplitude) and adverse effects relating to surgery and stem cell injection. Treatment efficacy was significantly different between placebo and treatment groups. All treatment group patients had significantly reduced pain and WOMAC scores, and increased Lysholm and VAS scores compared with the placebo group. These findings suggest that the SVF/PRP injection efficiently improved OA for 18 months after treatment. This study will be continuously monitored for additional 24 months. Stem Cells Translational Medicine 2017;6:187-195.


Subject(s)
Arthroscopy , Fractures, Stress/pathology , Osteoarthritis, Knee/therapy , Bone Marrow/pathology , Edema/pathology , Female , Fractures, Stress/physiopathology , Humans , Injections , Knee Joint/pathology , Knee Joint/physiopathology , Magnetic Resonance Imaging , Male , Middle Aged , Osteoarthritis, Knee/pathology , Osteoarthritis, Knee/physiopathology , Stromal Cells/metabolism , Treatment Outcome , Visual Analog Scale
6.
In Vitro Cell Dev Biol Anim ; 53(3): 207-216, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27778229

ABSTRACT

Endothelial progenitor cells (EPCs) play an important role in angiogenesis. However, they exist in limited numbers in the human body. This study was aimed to produce EPCs, for autologous transplantation, using direct reprogramming of skin fibroblasts under GMP-compliant conditions. Fibroblasts were collected and cultured from the skin in DMEM/F12 medium supplemented with 5% activated platelet-rich plasma and 1% antibiotic-antimycotic solution. They were then transfected with mRNA ETV2 and incubated in culture medium under hypoxia (5% oxygen) for 14 d. Phenotype analysis of transfected cells confirmed that single-factor ETV2 transfection successfully reprogrammed dermal fibroblasts into functional EPCs. Our results showed that ETV2 mRNA combined with hypoxia can give rise to functional EPCs. The cells exhibited functional phenotypes similar to endothelial cells derived from umbilical cord vein; they expressed CD31 and VEGFR2, and formed capillary-like structures in vitro. Moreover, these EPCs could significantly improve hindlimb ischemia in mouse models. Although the direct conversion efficacy was low (3.12 ± 0.98%), altogether our study demonstrates that functional EPCs can be produced from fibroblasts and can be used in clinical applications.


Subject(s)
Cell Differentiation/genetics , Cellular Reprogramming/genetics , Endothelial Progenitor Cells/cytology , Neovascularization, Physiologic/genetics , Animals , Cell Hypoxia , Cell Proliferation/genetics , Fibroblasts/cytology , Hindlimb/cytology , Hindlimb/growth & development , Humans , Mice , Skin/cytology , Transcription Factors/biosynthesis , Transcription Factors/genetics , Transfection
7.
Onco Targets Ther ; 9: 4441-51, 2016.
Article in English | MEDLINE | ID: mdl-27499638

ABSTRACT

BACKGROUND: Breast cancer (BC) is one of the leading cancers in women. Recent progress has enabled BC to be cured with high efficiency. However, late detection or metastatic disease often renders the disease untreatable. Additionally, relapse is the main cause of death in BC patients. Breast cancer stem cells (BCSCs) are considered to cause the development of BC and are thought to be responsible for metastasis and relapse. This study aimed to target BCSCs using dendritic cells (DCs) to treat tumor-bearing humanized mice models. MATERIALS AND METHODS: NOD/SCID mice were used to produce the humanized mice by transplantation of human hematopoietic stem cells. Human BCSCs were injected into the mammary fat pad to produce BC humanized mice. Both hematopoietic stem cells and DCs were isolated from the human umbilical cord blood, and immature DCs were produced from cultured mononuclear cells. DCs were matured by BCSC-derived antigen incubation for 48 hours. Mature DCs were vaccinated to BC humanized mice with a dose of 10(6) cells/mice, and the survival percentage was monitored in both treated and untreated groups. RESULTS: The results showed that DC vaccination could target BCSCs and reduce the tumor size and prolong survival. CONCLUSION: These results suggested that targeting BCSCs with DCs is a promising therapy for BC.

8.
Stem Cells Int ; 2016: 5720413, 2016.
Article in English | MEDLINE | ID: mdl-26839564

ABSTRACT

Because of self-renewal, strong proliferation in vitro, abundant sources for isolation, and a high differentiation capacity, mesenchymal stem cells are suggested to be potentially therapeutic for liver fibrosis/cirrhosis. In this study, we evaluated the treatment effects of mouse bone marrow-derived mesenchymal stem cells (BM-MSCs) on mouse liver cirrhosis induced by carbon tetrachloride. Portal and tail vein transplantations were examined to evaluate the effects of different injection routes on the liver cirrhosis model at 21 days after transplantation. BM-MSCs transplantation reduced aspartate aminotransferase/alanine aminotransferase levels at 21 days after injection. Furthermore, BM-MSCs induced positive changes in serum bilirubin and albumin and downregulated expression of integrins (600- to 7000-fold), transforming growth factor, and procollagen-α1 compared with the control group. Interestingly, both injection routes ameliorated inflammation and liver cirrhosis scores. All mice in treatment groups had reduced inflammation scores and no cirrhosis. In conclusion, transplantation of BM-MSCs via tail or portal veins ameliorates liver cirrhosis in mice. Notably, there were no differences in treatment effects between tail and portal vein administrations. In consideration of safety, we suggest transfusion of bone marrow-derived mesenchymal stem cells via a peripheral vein as a potential method for liver fibrosis treatment.

9.
In Vitro Cell Dev Biol Anim ; 52(2): 218-27, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26487430

ABSTRACT

Gingival stem cells (GSCs) are a novel source of mesenchymal stem cells (MSCs) that are easily accessed from the oral cavity. GSCs were considered valuable autograft MSCs with particular characteristics. However, the limitation in the number of available GSCs remains an obstacle. Therefore, this study aimed to stimulate GSC proliferation by ascorbic acid (AA) and determined the effects of AA on GSC pluripotent potential-related gene expression. GSCs were isolated from gum tissue by explant culture and continuously subcultured before analysis of stemness and effects of AA on pluripotent-related gene expression. GSCs cultured with various concentrations of AA showed increased proliferation in a dose-dependent manner. AA-treated GSCs showed significantly higher expression of SSEA-3, Sox-2, Oct-3/4, Nanog, and TRA-1-60 compared with control cells. More importantly, GSCs also maintained their stemness with MSC phenotypes and failed to cause tumors in nude athymic mice. Our results show that AA is a suitable factor to stimulate GSC proliferation.


Subject(s)
Ascorbic Acid/administration & dosage , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Gingiva/cytology , Mesenchymal Stem Cells/cytology , Animals , Antigens, Surface/biosynthesis , Antigens, Tumor-Associated, Carbohydrate/biosynthesis , Biomarkers/metabolism , Gene Expression Regulation, Developmental/drug effects , Gingiva/drug effects , Gingiva/growth & development , Homeodomain Proteins/biosynthesis , Humans , Mice , Mouth/cytology , Nanog Homeobox Protein , Octamer Transcription Factor-3/biosynthesis , Proteoglycans/biosynthesis , SOXB1 Transcription Factors/biosynthesis , Stage-Specific Embryonic Antigens/biosynthesis
10.
Cell Tissue Bank ; 17(2): 289-302, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26679929

ABSTRACT

Umbilical cord (UC) is a rich source of rapidly proliferating mesenchymal stem cells (MSCs) that are easily cultured on a large-scale. Clinical applications of UC-MSCs include graft-versus-host disease, and diabetes mellitus types 1 and 2. UC-MSCs should be isolated and proliferated according to good manufacturing practice (GMP) with animal component-free medium, quality assurance, and quality control for their use in clinical applications. This study developed a GMP standard protocol for UC-MSC isolation and culture. UC blood and UC were collected from the same donors. Blood vasculature was removed from UC. UC blood was used as a source of activated platelet rich plasma (aPRP). Small fragments (1-2 mm(2)) of UC membrane and Wharton's jelly were cut and cultured in DMEM/F12 medium containing 1 % antibiotic-antimycotic, aPRP (2.5, 5, 7.5 and 10 %) at 37 °C in 5 % CO2. The MSC properties of UC-MSCs at passage 5 such as osteoblast, chondroblast and adipocyte differentiation, and markers including CD13, CD14, CD29, CD34, CD44, CD45, CD73, CD90, CD105, and HLA-DR were confirmed. UC-MSCs also were analyzed for karyotype, expression of tumorigenesis related genes, cell cycle, doubling time as well as in vivo tumor formation in NOD/SCID mice. Control cells consisted of UC-MSCs cultured in DMEM/F12 plus 1 % antibiotic-antimycotic, and 10 % fetal bovine serum (FBS). All UC-MSC (n = 30) samples were successfully cultured in medium containing 7.5 and 10 % aPRP, 92 % of samples grew in 5.0 % aPRP, 86 % of samples in 2.5 % aPRP, and 72 % grew in 10 % FBS. UC-MSCs in these four groups exhibited similar marker profiles. Moreover, the proliferation rates in medium with PRP, especially 7.5 and 10 %, were significantly quicker compared with 2.5 and 5 % aPRP or 10 % FBS. These cells maintained a normal karyotype for 15 sub-cultures, and differentiated into osteoblasts, chondroblasts, and adipocytes. The analysis of pluripotent cell markers showed UC-MSCs maintained the expression of the oncogenes Nanog and Oct4 after long term culture but failed to transfer tumors in NOD/SCID mice. Replacing FBS with aPRP in the culture medium for UC tissues allowed the successful isolation of UC-MSCs that satisfy the minimum standards for clinical applications.


Subject(s)
Cell Separation/methods , Mesenchymal Stem Cells/cytology , Umbilical Cord/cytology , Animals , Biomarkers/metabolism , Cell Differentiation , Cell Lineage , Cell Proliferation , Cells, Cultured , Chromosomes, Human/metabolism , Gene Expression Regulation , Genes, Tumor Suppressor , Humans , Karyotyping , Mesenchymal Stem Cells/metabolism , Mesoderm/cytology , Mice, Nude , Mice, SCID , Oncogenes
11.
Onco Targets Ther ; 8: 323-34, 2015.
Article in English | MEDLINE | ID: mdl-25674007

ABSTRACT

Breast cancer is a leading cause of death in women, and almost all complications are due to chemotherapy resistance. Drug-resistant cells with stem cell phenotypes are thought to cause failure in breast cancer chemotherapy. Dendritic cell (DC) therapy is a potential approach to eradicate these cells. This study evaluates the specificity of DCs for breast cancer stem cells (BCSCs) in vitro and in vivo. BCSCs were enriched by a verapamil-resistant screening method, and reconfirmed by ALDH expression analysis and mammosphere assay. Mesenchymal stem cells (MSCs) were isolated from allogeneic murine bone marrow. DCs were induced from bone marrow-derived monocytes with 20 ng/mL GC-MSF and 20 ng/mL IL-4. Immature DCs were primed with BCSC- or MSC-derived antigens to make two kinds of mature DCs: BCSC-DCs and MSC-DCs, respectively. In vitro ability of BCSC-DCs and MSC-DCs with cytotoxic T lymphocytes (CTLs) to inhibit BCSCs was tested using the xCELLigence technique. In vivo, BCSC-DCs and MSC-DCs were transfused into the peripheral blood of BCSC tumor-bearing mice. The results show that in vitro BCSC-DCs significantly inhibited BCSC proliferation at a DC:CTL ratio of 1:40, while MSC-DCs nonsignificantly decreased BCSC proliferation. In vivo, tumor sizes decreased from 18.8% to 23% in groups treated with BCSC-DCs; in contrast, tumors increased 14% in the control group (RPMI 1640) and 47% in groups treated with MSC-DCs. The results showed that DC therapy could target and be specific to BCSCs. DCs primed with MSCs could trigger tumor growth. These results also indicate that DCs may be a promising therapy for treating drug-resistant cancer cells as well as cancer stem cells.

12.
Methods Mol Biol ; 1283: 73-85, 2015.
Article in English | MEDLINE | ID: mdl-25239529

ABSTRACT

Human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) are multipotent stem cells that can be differentiated into several specific cell types such as adipocytes, osteoblasts, and chondroblasts. They also were demonstrated to trans-differentiate into other cell lineages such as muscle cells and neurons. Thus, they are considered a promising stem cell source for therapeutic use. Here, we describe a method for production of good manufacturing practice-grade human UCB-MSCs for therapeutic use. The obtained UCB-MSCs are free of allogenous or xenogenous proteins. In addition, these MSCs could maintain the MSC phenotype in long-term culture.


Subject(s)
Cell Culture Techniques/methods , Cell Culture Techniques/standards , Fetal Blood/cytology , Mesenchymal Stem Cells/cytology , Cell Separation/methods , Cell Separation/standards , Cell- and Tissue-Based Therapy/methods , Cell- and Tissue-Based Therapy/standards , Humans , Immunophenotyping/methods , Mesenchymal Stem Cells/metabolism
13.
Onco Targets Ther ; 7: 1455-64, 2014.
Article in English | MEDLINE | ID: mdl-25170272

ABSTRACT

BACKGROUND: Dendritic cell (DC) therapy is a promising therapy for cancer-targeting treatments. Recently, DCs have been used for treatment of some cancers. We aimed to develop an in vitro assay to evaluate DC therapy in cancer treatment using a breast cancer model. METHODS: DCs were induced from murine bone marrow mononuclear cells in Roswell Park Memorial Institute (RPMI) 1640 medium supplemented with GM-CSF (20 ng/mL) and IL-4 (20 ng/mL). Immature DCs were primed with breast cancer stem cell (BCSC)-derived antigens. BCSCs were sorted from 4T1 cell lines based on aldehyde dehydrogenase expression. A mixture of DCs and cytotoxic T lymphocytes (CTLs) were used to evaluate the inhibitory effect of antigen-primed DCs on BCSCs. BCSC proliferation and doubling time were recorded based on impedance-based cell analysis using the xCELLigence system. The specification of inhibitory effects of DCs and CTLs was also evaluated using the same system. RESULTS: The results showed that impedance-based analysis of BCSCs reflected cytotoxicity and inhibitory effects of DCs and CTLs at 72 hours. Differences in ratios of DC:CTL changed the cytotoxicity of DCs and CTLs. CONCLUSION: This study successfully used impedance-based cell analysis as a new in vitro assay to evaluate DC efficacy in cancer immunotherapy. We hope this technique will contribute to the development and improvement of immunotherapies in the near future.

14.
J Transl Med ; 12: 56, 2014 Feb 24.
Article in English | MEDLINE | ID: mdl-24565047

ABSTRACT

BACKGROUND: Mesenchymal stem cells (MSCs) are an attractive source of stem cells for clinical applications. These cells exhibit a multilineage differentiation potential and strong capacity for immune modulation. Thus, MSCs are widely used in cell therapy, tissue engineering, and immunotherapy. Because of important advantages, umbilical cord blood-derived MSCs (UCB-MSCs) have attracted interest for some time. However, the applications of UCB-MSCs are limited by the small number of recoverable UCB-MSCs and fetal bovine serum (FBS)-dependent expansion methods. Hence, this study aimed to establish a xenogenic and allogeneic supplement-free expansion protocol. METHODS: UCB was collected to prepare activated platelet-rich plasma (aPRP) and mononuclear cells (MNCs). aPRP was applied as a supplement in Iscove modified Dulbecco medium (IMDM) together with antibiotics. MNCs were cultured in complete IMDM with four concentrations of aPRP (2, 5, 7, or 10%) or 10% FBS as the control. The efficiency of the protocols was evaluated in terms of the number of adherent cells and their expansion, the percentage of successfully isolated cells in the primary culture, surface marker expression, and in vitro differentiation potential following expansion. RESULTS: The results showed that primary cultures with complete medium containing 10% aPRP exhibited the highest success, whereas expansion in complete medium containing 5% aPRP was suitable. UCB-MSCs isolated using this protocol maintained their immunophenotypes, multilineage differentiation potential, and did not form tumors when injected at a high dose into athymic nude mice. CONCLUSION: This technique provides a method to obtain UCB-MSCs compliant with good manufacturing practices for clinical application.


Subject(s)
Cell Culture Techniques/methods , Cell Culture Techniques/standards , Cell Separation/methods , Cell Separation/standards , Fetal Blood/cytology , Guideline Adherence/standards , Mesenchymal Stem Cells/cytology , Adipocytes/cytology , Adipocytes/drug effects , Animals , Carcinogenesis/drug effects , Carcinogenesis/pathology , Cattle , Cell Adhesion/drug effects , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cell Shape/drug effects , Cells, Cultured , Culture Media/pharmacology , Humans , Immunophenotyping , Mesenchymal Stem Cells/drug effects , Mice , Mice, Nude , Osteoblasts/cytology , Osteoblasts/drug effects , Time Factors
15.
In Vitro Cell Dev Biol Anim ; 50(4): 321-30, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24163162

ABSTRACT

Skin aging is the result of internal and external factors. So-called photoaging has been identified as the major factor in skin aging. Effects of photoaging include inhibition of fibroblast and keratinocyte proliferation as well as collagen and fibronectin expression, while activating expression of collagenases such as matrix metalloproteinase-1. Previous studies have shown that extracts or products from human placenta significantly improve skin aging and chronic wound healing. However, there are few studies of umbilical cord extracts. Therefore, this study aimed to evaluate the effects of umbilical cord extract-derived formulae on three kinds of skin cells including fibroblasts, keratinocytes, and melanocytes. We prepared 20 formulae from intracellular umbilical cord extracts, extracellular umbilical cord extracts, and umbilical cord-derived stem cell extracts, as well as five control formulae. We evaluated the effects of the 25 formulae on fibroblast and keratinocyte proliferation, and expression of collagen I, fibronectin, and matrix metalloproteinase-1 in fibroblasts and tyrosinase in melanocytes. The results showed that 7.5% formula 35 was the most effective formula for promotion of fibroblast and keratinocyte proliferation. At this concentration, formula 35 also induced collagen expression and inhibited matrix metalloproteinase-1 expression at the transcriptional level. However, this formula had no effect on tyrosinase expression in melanocytes. These results demonstrate that umbilical cord extracts can serve as an attractive source of proteins for skincare and chronic wound healing products.


Subject(s)
Cell Proliferation/drug effects , Skin Aging/drug effects , Tissue Extracts/administration & dosage , Umbilical Cord/chemistry , Collagen Type I/biosynthesis , Fibroblasts/cytology , Fibroblasts/drug effects , Fibronectins/biosynthesis , Gene Expression Regulation, Developmental/drug effects , Humans , Keratinocytes/cytology , Keratinocytes/drug effects , Matrix Metalloproteinase 1/biosynthesis , Melanocytes/cytology , Melanocytes/drug effects , Tissue Extracts/chemistry
16.
Stem Cell Res Ther ; 4(4): 91, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23915433

ABSTRACT

INTRODUCTION: Adipose-derived stem cells (ADSCs) have been isolated, expanded, and applied in the treatment of many diseases. ADSCs have also been used to treat injured articular cartilage. However, there is controversy regarding the treatment efficiency. We considered that ADSC transplantation with activated platelet-rich plasma (PRP) may improve injured articular cartilage compared with that of ADSC transplantation alone. In this study, we determined the role of PRP in ADSC transplantation to improve the treatment efficiency. METHODS: ADSCs were isolated and expanded from human adipose tissue. PRP was collected and activated from human peripheral blood. The effects of PRP were evaluated in vitro and in ADSC transplantation in vivo. In vitro, the effects of PRP on ADSC proliferation, differentiation into chondrogenic cells, and inhibition of angiogenic factors were investigated at three concentrations of PRP (10%, 15% and 20%). In vivo, ADSCs pretreated with or without PRP were transplanted into murine models of injured articular cartilage. RESULTS: PRP promoted ADSC proliferation and differentiation into chondrogenic cells that strongly expressed collagen II, Sox9 and aggrecan. Moreover, PRP inhibited expression of the angiogenic factor vascular endothelial growth factor. As a result, PRP-pretreated ADSCs improved healing of injured articular cartilage in murine models compared with that of untreated ADSCs. CONCLUSION: Pretreatment of ADSCs with PRP is a simple method to efficiently apply ADSCs in cartilage regeneration. This study provides an important step toward the use of autologous ADSCs in the treatment of injured articular cartilage.


Subject(s)
Adipose Tissue/metabolism , Tissue Engineering/methods , Adipose Tissue/cytology , Animals , Cartilage, Articular , Cell Differentiation , Humans , Immunophenotyping , Mice , Platelet-Rich Plasma , Regeneration , Stem Cell Transplantation
17.
Cytotechnology ; 65(4): 491-503, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23104270

ABSTRACT

The efficacy of hepatocellular carcinoma (HCC) treatment is very low because of the high percentage of recurrence and resistance to anticancer agents. Hepatic cancer stem cells (HCSCs) are considered the origin of such recurrence and resistance. Our aim was to evaluate the stemness of doxorubicin and 5-fluorouracil resistant hepatic cancer cells and establish the new method to isolate the HCSCs from primary cultured HCC tumors. HCC biopsies were used to establish primary cultures. Then, primary cells were selected for HCSCs by culture in medium supplemented with doxorubicin (0, 0.1, 0.25, 0.5 or 1 µg/mL), 5-fluorouracil (0, 0.1, 0.25, 0.5 or 1 µg/mL) or their combination. Selection was confirmed by detection of HCSC markers such as CD133, CD13, CD90, and the side population was identified by rhodamine 123 efflux. The cell population with the strongest expression of these markers was used to evaluate the cell cycle, gene expression profile, tumor sphere formation, marker protein expression, and in vivo tumorigenesis. Selective culture of primary cells in medium supplemented with 0.5 µg/mL doxorubicin and 1 µg/mL 5-fluorouracil selected cancer cells with the highest stemness properties. Selected cells strongly expressed CD13, CD133, CD90, and CD326, efflux rhodamine 123 and formed tumor spheres in suspension. Moreover, selected cells were induced to differentiate into cells with high expression of CD19 and AFP (alpha-fetoprotein), and importantly, could form tumors in NOD/SCID mice upon injection of 1 × 10(5) cells/mouse. Selective culture with doxorubicin and 5-fluorouracil will enrich HCSCs, is an easy method to obtain HCSCs that can be used to develop better therapeutic strategies for patients with HCC, and particularly HCSC-targeting therapy.

18.
Onco Targets Ther ; 5: 77-84, 2012.
Article in English | MEDLINE | ID: mdl-22649280

ABSTRACT

BACKGROUND: Breast cancer stem cells with a CD44(+)CD24(-) phenotype are the origin of breast tumors. Strong CD44 expression in this population indicates its important role in maintaining the stem cell phenotype. Previous studies show that CD44 down-regulation causes CD44(+)CD24(-) breast cancer stem cells to differentiate into non-stem cells that are sensitive to antitumor drugs and lose many characteristics of the original cells. In this study, we determined tumor suppression in non-obese severe combined immunodeficiency mice using CD44 shRNA therapy combined with doxorubicin treatment. METHODS: Tumor-bearing non-obese severe combined immunodeficiency mice were established by injection of CD44(+)CD24(-) cells. To track CD44(+)CD24(-) cells, green fluorescence protein was stably transduced using a lentiviral vector prior to injection into mice. The amount of CD44 shRNA lentiviral vector used for transduction was based on CD44 down-regulation by in vitro CD44 shRNA transduction. Mice were treated with direct injection of CD44 shRNA lentiviral vector into tumors followed by doxorubicin administration after 48 hours. The effect was evaluated by changes in the size and weight of tumors compared with that of the control. RESULTS: The combination of CD44 down-regulation and doxorubicin strongly suppressed tumor growth with significant differences in tumor sizes and weights compared with that of CD44 down-regulation or doxorubicin treatment alone. In the combination of CD44 down-regulation and doxorubicin group, the tumor weight was significantly decreased by 4.38-fold compared with that of the control group. CONCLUSION: These results support a new strategy for breast cancer treatment by combining gene therapy with chemotherapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...