Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Sci ; 113(3): 718-724, 2024 03.
Article in English | MEDLINE | ID: mdl-37690778

ABSTRACT

Triggerable coatings, such as pH-responsive polymethacrylate copolymers, can be used to protect the active pharmaceutical ingredients contained within oral solid dosage forms from the acidic gastric environment and to facilitate drug delivery directly to the intestine. However, gastrointestinal pH can be highly variable, which can reduce delivery efficiency when using pH-responsive drug delivery technologies. We hypothesized that biomaterials susceptible to proteolysis could be used in combination with other triggerable polymers to develop novel enteric coatings. Bioinformatic analysis suggested that silk fibroin is selectively degradable by enzymes in the small intestine, including chymotrypsin, but resilient to gastric pepsin. Based on the analysis, we developed a silk fibroin-polymethacrylate copolymer coating for oral dosage forms. In vitro and in vivo studies demonstrated that capsules coated with this novel silk fibroin formulation enable pancreatin-dependent drug release. We believe that this novel formulation and extensions thereof have the potential to produce more effective and personalized oral drug delivery systems for vulnerable populations including patients that have impaired and highly variable intestinal physiology.


Subject(s)
Fibroins , Humans , Pancreatin , Drug Delivery Systems , Polymethacrylic Acids , Polymers , Silk
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 2491-2494, 2022 07.
Article in English | MEDLINE | ID: mdl-36085797

ABSTRACT

More than two decades ago it was discovered that nitric oxide (NO) concentrations in gas aspirated during colonoscopy were more than 100 times higher in patients diagnosed with Ulcerative Colitis (UC) than controls. While this provides a diagnostic opportunity, it has not been possible to perform in situ detection of NO via a non-invasive manner. This work presents the feasibility of in situ detection of NO by means of a capsule-like electrochemical gas sensor. Our in vivo results in a large animal model of intestinal inflammation show that NO can be directly detected at the site of inflammation and that it quickly dissipates to surrounding tissues, demonstrating the importance of in situ detection.


Subject(s)
Inflammation , Nitric Oxide , Animals , Biomarkers , Colonoscopy , Disease Models, Animal , Inflammation/diagnosis
3.
Sci Adv ; 8(21): eabm8478, 2022 05 27.
Article in English | MEDLINE | ID: mdl-35622910

ABSTRACT

Administering medicines to 0- to 5-year-old children in a resource-limited environment requires dosage forms that circumvent swallowing solids, avoid on-field reconstitution, and are thermostable, cheap, versatile, and taste masking. We present a strategy that stands to solve this multifaceted problem. As many drugs lack adequate water solubility, our formulations used oils, whose textures could be modified with gelling agents to form "oleogels." In a clinical study, we showed that the oleogels can be formulated to be as fluid as thickened beverages and as stiff as yogurt puddings. In swine, oleogels could deliver four drugs ranging three orders of magnitude in their water solubilities and two orders of magnitude in their partition coefficients. Oleogels could be stabilized at 40°C for prolonged durations and used without redispersion. Last, we developed a macrofluidic system enabling fixed and metered dosing. We anticipate that this platform could be adopted for pediatric dosing, palliative care, and gastrointestinal disease applications.


Subject(s)
Food , Oils , Animals , Child , Child, Preschool , Drug Delivery Systems , Gels , Humans , Swine , Water
4.
Adv Sci (Weinh) ; 8(24): e2102861, 2021 12.
Article in English | MEDLINE | ID: mdl-34713599

ABSTRACT

Continuous monitoring in the intensive care setting has transformed the capacity to rapidly respond with interventions for patients in extremis. Noninvasive monitoring has generally been limited to transdermal or intravascular systems coupled to transducers including oxygen saturation or pressure. Here it is hypothesized that gastric fluid (GF) and gases, accessible through nasogastric (NG) tubes, commonly found in intensive care settings, can provide continuous access to a broad range of biomarkers. A broad characterization of biomarkers in swine GF coupled to time-matched serum is conducted . The relationship and kinetics of GF-derived analyte level dynamics is established by correlating these to serum levels in an acute renal failure and an inducible stress model performed in swine. The ability to monitor ketone levels and an inhaled anaesthetic agent (isoflurane) in vivo is demonstrated with novel NG-compatible sensor systems in swine. Gastric access remains a main stay in the care of the critically ill patient, and here the potential is established to harness this establishes route for analyte evaluation for clinical management.


Subject(s)
Acute Kidney Injury/metabolism , Anesthetics, Inhalation/metabolism , Gastric Juice/metabolism , Isoflurane/metabolism , Monitoring, Physiologic/methods , Animals , Biomarkers/metabolism , Disease Models, Animal , Intubation, Gastrointestinal , Ketones/metabolism , Stomach/metabolism , Swine
5.
Clin Transl Gastroenterol ; 11(12): e00229, 2020 12.
Article in English | MEDLINE | ID: mdl-33512801

ABSTRACT

INTRODUCTION: Bile acids, such as chenodeoxycholic acid, play an important role in digestion but are also involved in intestinal motility, fluid homeostasis, and humoral activity. Colonic delivery of sodium chenodeoxycholate (CDC) has demonstrated clinical efficacy in treating irritable bowel syndrome with constipation but was associated with a high frequency of abdominal pain. We hypothesized that these adverse effects were triggered by local super-physiological CDC levels caused by an unfavorable pharmacokinetic profile of the delayed release formulation. METHODS: We developed novel release matrix systems based on hydroxypropyl methylcellulose (HPMC) for sustained release of CDC. These included standard HPMC formulations as well as bi-layered formulations to account for potential delivery failures due to low colonic fluid in constipated patients. We evaluated CDC release profiles in silico (pharmacokinetic modeling), in vitro and in vivo in swine (pharmacokinetics, rectal manometry). RESULTS: For the delayed release formulation in vitro release studies demonstrated pH triggered dose dumping which was associated with giant colonic contractions in vivo. Release from the bi-layered HPMC systems provided controlled release of CDC while minimizing the frequency of giant contractions and providing enhanced exposure as compared to standard HPMC formulations in vivo. DISCUSSION: Bi-phasic CDC release could help treat constipation while mitigating abdominal pain observed in previous clinical trials. Further studies are necessary to demonstrate the therapeutic potential of these systems in humans.


Subject(s)
Chenodeoxycholic Acid/administration & dosage , Drug Carriers/chemistry , Hypromellose Derivatives/chemistry , Animals , Chenodeoxycholic Acid/pharmacokinetics , Colon/chemistry , Colon/metabolism , Computer Simulation , Constipation/drug therapy , Constipation/etiology , Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/pharmacokinetics , Drug Liberation , Female , Humans , Hydrogen-Ion Concentration , Intestinal Mucosa/chemistry , Intestinal Mucosa/metabolism , Irritable Bowel Syndrome/complications , Irritable Bowel Syndrome/drug therapy , Models, Animal , Models, Biological , Peristalsis/drug effects , Swine
6.
ACS Biomater Sci Eng ; 6(2): 822-832, 2020 02 10.
Article in English | MEDLINE | ID: mdl-33464854

ABSTRACT

There has been a recent increase in exploring the use of decellularized plant tissue as a novel "green" material for biomedical applications. As part of this effort, we have developed a technique to decellularize cultured plant cells (tobacco BY-2 cells and rice cells) and tissue (tobacco hairy roots) that uses deoxyribonuclease I (DNase I)). As a proof of concept, all cultured plant cells and tissue were transformed to express recombinant enhanced green fluorescent protein (EGFP) to show that the proteins of interest could be retained within the matrices. Decellularization of lyophilized tobacco BY-2 cells with DNase for 30 min depleted the DNA content from 1503 ± 459 to 31 ± 5 ng/sample. The decellularization procedure resulted in approximately 36% total protein retention (154 ± 60 vs 424 ± 70 µg/sample) and 33% EGFP retention. Similar results for DNA removal and protein retention were observed with the rice cells and tobacco hairy root matrices. When exposed to decellularized BY-2 cell-derived matrices, monolayer cultures of human foreskin fibroblasts (hFFs) maintained or increased metabolic activity, which is an indicator of cell viability. Furthermore, hFFs were able to attach, spread, and proliferate when cultured with the decellularized BY-2 cell-derived matrices in an aggregate model. Overall, these studies demonstrate that cultured plant cells and tissue can be effectively decellularized with DNase I with substantial protein retention. The resulting material has a positive impact on hFF metabolic activity and could be employed to create a three-dimensional environment for cell growth. These results thus show the promise of using naturally derived cellulose matrices from cultured plant cells and tissues for biomedical applications.


Subject(s)
Extracellular Matrix , Plant Cells , Tissue Scaffolds , Cells, Cultured , Humans , Materials Testing
7.
Nat Commun ; 10(1): 493, 2019 01 30.
Article in English | MEDLINE | ID: mdl-30700712

ABSTRACT

Devices that interact with living organisms are typically made of metals, silicon, ceramics, and plastics. Implantation of such devices for long-term monitoring or treatment generally requires invasive procedures. Hydrogels offer new opportunities for human-machine interactions due to their superior mechanical compliance and biocompatibility. Additionally, oral administration, coupled with gastric residency, serves as a non-invasive alternative to implantation. Achieving gastric residency with hydrogels requires the hydrogels to swell very rapidly and to withstand gastric mechanical forces over time. However, high swelling ratio, high swelling speed, and long-term robustness do not coexist in existing hydrogels. Here, we introduce a hydrogel device that can be ingested as a standard-sized pill, swell rapidly into a large soft sphere, and maintain robustness under repeated mechanical loads in the stomach for up to one month. Large animal tests support the exceptional performance of the ingestible hydrogel device for long-term gastric retention and physiological monitoring.


Subject(s)
Hydrogels/chemistry , Materials Testing , Monitoring, Physiologic/methods , Administration, Oral , Animals , Caco-2 Cells , Cell Survival/drug effects , Humans , Hydrogels/adverse effects , Hydrogels/toxicity , Mechanical Phenomena , Stomach/drug effects
8.
J Mater Chem B ; 7(13): 2151-2161, 2019 04 07.
Article in English | MEDLINE | ID: mdl-32073574

ABSTRACT

Drug delivery systems capable of local sustained release of small molecule therapeutics remain a critical need in many fields, including oncology. Here, a system to create tunable hydrogels capable of modulating the loading and release of cationic small molecule therapeutics was developed. Chondroitin sulfate (CS) is a sulfated glycosaminoglycan that has many promising properties, including biocompatibility, biodegradation and chemically modifiable groups for both covalent and non-covalent bonding. CS was covalently modified with photocrosslinkable methacryloyl groups (CSMA) to develop an injectable hydrogel fabrication. Utilizing anionic groups, cationic drugs can be adsorbed and released from the hydrogels. This study demonstrates the synthesis of CSMA with a varying degree of substitution (DS) to generate hydrogels with varying swelling properties, maximum injection force, and drug release kinetics. The DS of the synthesized CSMA ranged from 0.05 ± 0.02 (2 h reaction) to 0.28 ± 0.02 (24 h reaction) with a DS of 1 representing 100% modification. The altered DS resulted in changes in hydrogel properties with the swelling of 20% CSMA hydrogels ranging from 42 (2 h reaction) to 13 (24 h reaction) and injection forces ranging from 18 N (2 h reaction) to 94 N (24 h reaction). The release of sunitinib, an oncology therapeutic that inhibits intracellular signaling by targeting multiple receptor tyrosine kinases, ranged from 18 µg per day (2 h reaction) to 9 µg per day (24 h reaction). While decreasing the DS increased the hydrogel swelling and rate of therapeutic release, it also limited the hydrogel fabrication range to only those containing 10% or higher CSMA. Blended polymer systems with poly(vinyl alcohol)-methacrylate (PVAMA) were fabricated to stabilize the resulting hydrogels via attenuating the swelling properties. Release profiles previously unattainable with the pure CSMA hydrogels were achieved with the blended hydrogel formulations. Overall, these studies identify a method to formulate tunable CSMA and blended CSMA/PVAMA hydrogels capable of sustained release of cationic therapeutics over six weeks with applications in oncology therapeutics.


Subject(s)
Chondroitin Sulfates/chemistry , Drug Carriers/chemistry , Hydrogels/chemistry , Methacrylates/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Chondroitin Sulfates/chemical synthesis , Chondroitin Sulfates/toxicity , Doxorubicin/chemistry , Doxorubicin/pharmacology , Drug Carriers/chemical synthesis , Drug Carriers/toxicity , Drug Liberation , Humans , Hydrogels/chemical synthesis , Hydrogels/toxicity , Methacrylates/chemical synthesis , Methacrylates/toxicity , Molecular Structure , Sunitinib/chemistry , Sunitinib/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...