Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Med Chem ; 26(24): 4585-4605, 2019.
Article in English | MEDLINE | ID: mdl-31284852

ABSTRACT

Gac, Momordica cochinchinensis (Lour.) Spreng. belongs to the Cucurbitaceae family. It is more considered as a super fruit. The demand for this plant is growing in countries where its reputation is high, including traditional countries of gac culture and countries fond of super fruits and food supplements. In these latter countries, the industrial strategy aims at producing high added value in food supplements or nutritional rich preparations. However, when marketing is not the driving force and claims have to be related to scientific data, the situation of gac is less "heavenly", mainly because its most remarkable properties are in the field of micronutrients. These latter components are indeed very important for health but their supplementation on healthy populations brings no significant advantage. This paper proposes to review aspects important for the nutritional reputation of this plant: where it comes from, how it is cultured to have an optimal nutritional composition, what is its composition and how it can impact health of consumers, in which products it is used and what are the regulations to use it in different markets. One important goal of this review is to give a critical and scientific approach to confirm data on this fruit, which has been promoted by marketing departments injecting so many wrong and unverified information. Missing data will be highlighted and potential positive applications are proposed all along the text.


Subject(s)
Momordica/chemistry , Anti-Inflammatory Agents/chemistry , Antioxidants/chemistry , Antioxidants/therapeutic use , Carotenoids/chemistry , Carotenoids/therapeutic use , Dietary Supplements/analysis , Fruit/chemistry , Fruit/metabolism , Humans , Momordica/metabolism , Neoplasms/drug therapy , Polyphenols/chemistry , Polyphenols/therapeutic use , Vitamins/chemistry
2.
Food Res Int ; 107: 275-280, 2018 05.
Article in English | MEDLINE | ID: mdl-29580486

ABSTRACT

Hibiscus sabdariffa extracts, a rich source of anthocyanin, were subjected to encapsulation in yeast cells. An encapsulation yield (EY) of 208 µg/100 mg of cells and an encapsulation efficiency (EE) of 27%, were reached after optimisation of the ratios (0.5 g wet yeast cells for 5 ml of anthocyanin extracts at 1 g·L-1) and with 10% of ethanol. The storage stability of encapsulated pigments was investigated in water and buffer pH 1.5 at 5 & 37 °C for 10 days and 90 °C for 30 min. The percentage of loss of colour was determined by colourimetry assays. The microparticles made of yeast with or without heat treatment exhibited different protecting effects (P < 0.01). At 37 °C, the percentage of loss of colour in water was of 2.5% for heat-treated and 36.5% for non-treated yeast microparticles, suggesting that yeast enzymes would be responsible for the loss of anthocyanin during storage. These results are confirmed by the percentage of loss of colour which was far lower in conditions of low enzymatic activity: 3.1% at 5 °C for non-heat-treated cells in water. The pH of solvent had also an important effect on the degradation of encapsulated anthocyanin; in buffer at pH 1.5 and 37 °C with the non-heat-treated cells, the degradation decreased strongly to 9.4% compared with 36.5% in water. These results show that yeast cells are a good mean of encapsulation of pigments for a colouring purpose and that they provide anthocyanins a good protection as long as their enzymes are inactivated.


Subject(s)
Anthocyanins/analysis , Anthocyanins/chemistry , Hibiscus/chemistry , Pigments, Biological/analysis , Pigments, Biological/chemistry , Saccharomyces cerevisiae/chemistry , Color
3.
Food Chem ; 190: 1137-1144, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26213087

ABSTRACT

Extraction of bioactives is a cause of structural changes in these molecules. In this work, the bioactivity of commercial natural ß-carotenes, one softly extracted without heat-assistance from Momordica cochinchinensis (BCG), one conventionally extracted from another natural source (BCC), and a synthetic one (BCS), was assessed during an additional heat-treatment mimicking formulation. Their antioxidant activities were evaluated after heat-treatment at different concentrations through hemolysis of horse red blood cells. The thermal 15-cis-isomerization of ß-carotene, characterized by DAD-HPLC, resulted in a 2.5- to 4.8-fold increase in the anti-hemolytic effect but this was undetected in chemical assay, at 4 µM. At 100 µM, BCC lost its antioxidant properties and became pro-oxidant. This effect might be caused by long-chain-oxidized-products of BCC. Results demonstrated that a short heat-treatment improves the bioactivity of ß-carotene but longer treatments made BCC prooxidant, showing that samples that underwent drastic extraction processes could not tolerate additional steps for functional food production.


Subject(s)
Antioxidants/chemistry , Erythrocytes/physiology , Momordica/chemistry , beta Carotene/analysis , Animals , Horses , Hot Temperature , Reactive Oxygen Species
6.
Food Chem ; 156: 58-63, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24629938

ABSTRACT

Momordica cochinchinensis (gac) is a plant rich in lycopene. This pigment tends to solubilize in oil and get damaged during extraction. The impact of heating on cis-isomerization of oil-free lycopene in hexane was studied at 50 and 80°C during 240min with UV-Vis spectrometry, DAD-HPLC and TEAC test. The initial all-trans-form isomerized to the 13-cis isomer more rapidly at 80°C. After this treatment, 16% of the lycopene compounds were in the 9-cis-form. This isomer triggered an increase in the antioxidant properties which was detectable from concentrations above 9% and resulted in a change from 2.4 to 3.7µmol Trolox equivalent. It is thus possible to increase the bioactivity of lycopene samples by controlling heating. The evolution of ratios calculated from the global UV-Vis spectrum was representative of cis-isomerization and spectrometry can thus be a simple way to evaluate the state of isomerization of lycopene solutions.


Subject(s)
Antioxidants/chemistry , Carotenoids/chemistry , Momordica/chemistry , Plant Extracts/chemistry , Hot Temperature , Isomerism , Lycopene , Spectrophotometry
7.
Appl Microbiol Biotechnol ; 97(15): 6635-45, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23820556

ABSTRACT

From the first observation about 40 years ago that yeast cells were interesting protective structures that could be used in several industrial applications, processes have been developed enabling technologists to incorporate several compounds possessing different physico-chemical (hydrophobic/hydrophilic) properties. Technologists screened yeast diversity to choose strains possessing the best potential and modified their physiological state to increase the uptake capability and the envelope plasticity, for instance by increasing the amount of lipids. Physico-chemical treatments were also used to improve the uptake and decrease the yeast natural material impact on the final products. For example, yeast cells could be "emptied" of their plasmic material. Yeast cells can also be coated with an additional polymeric material to increase resistance to heat treatment or decrease material liberation.These capsules can be used for several applications including carbonless paper, perfuming tissues and drug targeting, but the main industrial application deals currently with flavour encapsulation, although encapsulation in yeast is also interesting for the global food industry trend for health products.This paper proposes to review the use of yeast as an encapsulation structure focusing particularly on the properties of the yeast capsule and their impact on loading, protection, targeting and release.


Subject(s)
Chemistry, Pharmaceutical , Yeasts , Organelles/metabolism
8.
Appl Microbiol Biotechnol ; 93(5): 2125-34, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21863313

ABSTRACT

Based on the observation that shocks provoked by heat or amphiphilic compounds present some similarities, this work aims at studying whether cells grown on oleate (amphiphilic pre-stress) acquire a tolerance to heat shock. In rich media, changing glucose for oleate significantly enhanced the cell resistance to the shock, however, cells grown on a minimal oleate medium lost their ability to grow on agar with the same kinetic than glucose-grown cells (more than 7-log decrease in 18 min compared with 3-log for oleate-grown cells). Despite this difference in kinetics, the sequence of events was similar for oleate-grown cells maintained at 50°C with a (1) loss of ability to form colonies at 27°C, (2) loss of membrane integrity and (3) lysis (observed only for some minimal-oleate-grown cells). Glucose-grown cells underwent different changes. Their membranes, which were less fluid, lost their integrity as well and cells were rapidly inactivated. But, surprisingly, their nuclear DNA was not stained by propidium iodide and other cationic fluorescent DNA-specific probes but became stainable by hydrophobic ones. Moreover, they underwent a dramatic increase in membrane viscosity. The evolution of lipid bodies during the heat shock depended also on the growth medium. In glucose-grown cells, they seemed to coalesce with the nuclear membrane whereas for oleate-grown cells, they coalesced together forming big droplets which could be released in the medium. In some rare cases of oleate-grown cells, lipid bodies were fragmented and occupied all the cell volume. These results show that heat triggers programmed cell death with uncommon hallmarks for glucose-grown cells and necrosis for methyl-oleate-grown cells.


Subject(s)
Glucose/metabolism , Microbial Viability/radiation effects , Oleic Acid/metabolism , Yarrowia/metabolism , Yarrowia/radiation effects , Cell Membrane/physiology , Cell Membrane/radiation effects , Culture Media/chemistry , Hot Temperature , Stress, Physiological , Yarrowia/growth & development , Yarrowia/physiology
9.
Appl Microbiol Biotechnol ; 87(3): 1089-99, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20422183

ABSTRACT

In hydrophobic compounds biotechnology, medium-chain-length metabolites often perturb cell activity. Their effect is usually studied in model conditions of growth in glucose media. Here, we study whether culture on lipids has an impact on the resistance of Yarrowia lipolytica to such compounds: Cells were cultured on glucose or oleate and submitted to gamma-dodecalactone. After a 60-min exposure to 3 g L(-1), about 80% of the glucose-grown cells (yeast extract peptone dextrose (YPD) cells) had lost their cultivability, 38% their membrane integrity, and 31% their reducing capacity as shown with propidium iodide and methylene blue, respectively. For oleate-grown cells, treatment at 6 g L(-1) did not alter cultivability despite some transient loss of membrane integrity from 3 g L(-1). It was shown with diphenylhexatriene and 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene that oleate-grown cells had membranes more fluid and less sensitive to the lactone-induced fluidization. Analyses revealed also higher contents of ergosterol but, for YPD- and minimum-oleate-grown cells (YNBO cells), the addition of lactone provoked a decrease in the concentration of ergosterol in a way similar to the depletion by methyl-beta-cyclodextrin and an important membrane fluidization. Ergosterol depletion or incorporation increased or decreased, respectively, cell sensitivity to lactone. This study shows that the embedment of oleate moieties into membranes as well as higher concentrations of sterol play a role in the higher resistance to lactone of oleate-grown cells (YPO cells). Similar oleate-induced increase in resistance was also observed for Rhodotorula and Candida strains able to grow on oleate as the sole carbon source whereas Saccharomyces and Sporidiobolus cells were more sensitive after induction.


Subject(s)
Cell Membrane/chemistry , Culture Media/chemistry , Lactones/chemistry , Yarrowia/metabolism , Cell Membrane/metabolism , Culture Media/metabolism , Glucose/metabolism , Lactones/metabolism , Microbial Viability , Oleic Acid/metabolism , Yarrowia/chemistry , Yarrowia/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...