Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38854032

ABSTRACT

Aims: Pulmonary hypertension (PH) results in an increase in RV afterload, leading to RV dysfunction and failure. The mechanisms underlying maladaptive RV remodeling are poorly understood. In this study, we investigated the multiscale and mechanistic nature of RV free wall (RVFW) biomechanical remodeling and its correlations with RV function adaptations. Methods and Results: Mild and severe models of PH, consisting of hypoxia (Hx) model in Sprague-Dawley (SD) rats (n=6 each, Control and PH) and Sugen-hypoxia (SuHx) model in Fischer (CDF) rats (n=6 each, Control and PH), were used. Organ-level function and tissue-level stiffness and microstructure were quantified through in-vivo and ex-vivo measures, respectively. Multiscale analysis was used to determine the association between fiber-level remodeling, tissue-level stiffening, and organ-level dysfunction. Animal models with different PH severity provided a wide range of RVFW stiffening and anisotropy alterations in PH. Decreased RV-pulmonary artery (PA) coupling correlated strongly with stiffening but showed a weaker association with the loss of RVFW anisotropy. Machine learning classification identified the range of adaptive and maladaptive RVFW stiffening. Multiscale modeling revealed that increased collagen fiber tautness was a key remodeling mechanism that differentiated severe from mild stiffening. Myofiber orientation analysis indicated a shift away from the predominantly circumferential fibers observed in healthy RVFW specimens, leading to a significant loss of tissue anisotropy. Conclusion: Multiscale biomechanical analysis indicated that although hypertrophy and fibrosis occur in both mild and severe PH, certain fiber-level remodeling events, including increased tautness in the newly deposited collagen fibers and significant reorientations of myofibers, contributed to excessive biomechanical maladaptation of the RVFW leading to severe RV-PA uncoupling. Collagen fiber remodeling and the loss of tissue anisotropy can provide an improved understanding of the transition from adaptive to maladaptive remodeling. Translational perspective: Right ventricular (RV) failure is a leading cause of mortality in patients with pulmonary hypertension (PH). RV diastolic and systolic impairments are evident in PH patients. Stiffening of the RV wall tissue and changes in the wall anisotropy are expected to be major contributors to both impairments. Global assessments of the RV function remain inadequate in identifying patients with maladaptive RV wall remodeling primarily due to their confounded and weak representation of RV fiber and tissue remodeling events. This study provides novel insights into the underlying mechanisms of RV biomechanical remodeling and identifies the adaptive-to-maladaptive transition across the RV biomechanics-function spectrum. Our analysis dissecting the contribution of different RV wall remodeling events to RV dysfunction determines the most adverse fiber-level remodeling to RV dysfunction as new therapeutic targets to curtail RV maladaptation and, in turn, RV failure in PH.

2.
Acta Biomater ; 162: 240-253, 2023 05.
Article in English | MEDLINE | ID: mdl-36963596

ABSTRACT

The myocardium possesses an intricately designed microarchitecture to produce an optimal cardiac contraction. The contractile behavior of the heart is generated at the sarcomere level and travels across several length scales to manifest as the systolic function at the organ level. While passive myocardial behavior has been studied extensively, the translation of active tension produced at the fiber level to the organ-level function is not well understood. Alterations in cardiac systolic function are often key sequelae in structural heart diseases, such as myocardial infarction and systolic heart failure; thus, characterization of the contractile behavior of the heart across multiple length scales is essential to improve our understanding of mechanisms collectively leading to depressed systolic function. In this study, we present a methodology to characterize the active behavior of left ventricle free wall (LVFW) myocardial tissues in mice. Combined with active tests in papillary muscle fibers and conventional in vivo contractility measurement at the organ level in an animal-specific manner, we establish a multiscale active characterization of the heart from fiber to organ. In addition, we quantified myocardial architecture from histology to shed light on the directionality of the contractility at the tissue level. The LVFW tissue activation-relaxation behavior under isometric conditions was qualitatively similar to that of the papillary muscle fiber bundle. However, the maximum stress developed in the LVFW tissue was an order of magnitude lower than that developed by a fiber bundle, and the time taken for active forces to plateau was 2-3 orders of magnitude longer. Although the LVFW tissue exhibited a slightly stiffer passive response in the circumferential direction, the tissues produced significantly larger active stresses in the longitudinal direction during active testing. Also, contrary to passive viscoelastic stress relaxation, active stresses relaxed faster in the direction with larger peak stresses. The multiscale experimental pipeline presented in this work is expected to provide crucial insight into the contractile adaptation mechanisms of the heart with impaired systolic function. STATEMENT OF SIGNIFICANCE: Heart failure cause significant alterations to the contractile-relaxation behavior of the yocardium. Multiscale characterization of the contractile behavior of the myocardium is essential to advance our understanding of how contractility translates from fiber to organ and to identify the multiscale mechanisms leading to impaired cardiac function. While passive myocardial behavior has been studied extensively, the investigation of tissue-level contractile behavior remains critically scarce in the literature. To the best of our knowledge, our study here is the first to investigate the contractile behavior of the left ventricle at multiple length scales in small animals. Our results indicate that the active myocardial wall is a function of transmural depth and relaxes faster in the direction with larger peak stresses.


Subject(s)
Heart Ventricles , Heart , Mice , Animals , Heart/physiology , Myocardium , Myocardial Contraction , Systole
3.
Clin Cancer Res ; 28(8): 1507-1517, 2022 04 14.
Article in English | MEDLINE | ID: mdl-35110417

ABSTRACT

PURPOSE: This phase Ib trial was designed to evaluate the safety and early efficacy signal of the combination of imatinib and binimetinib in patients with imatinib-resistant advanced gastrointestinal stromal tumors (GISTs). PATIENTS AND METHODS: This trial used a standard 3 + 3 design to determine the recommended phase II dose (RP2D). Additional patients were enrolled on an expansion cohort at the RP2D enriching for succinate dehydrogenase (SDH)-deficient GISTs to explore potential efficacy. RESULTS: The trial enrolled nine patients in the dose-escalation cohort and 14 in the dose-expansion cohort including six with SDH-deficient GISTs. Imatinib 400 mg daily with binimetinib 45 mg twice daily was established as the RP2D. Dose-limiting toxicity (DLT) was asymptomatic grade 4 creatinine phosphokinase (CPK) elevation. The most common non-DLT grade 3/4 toxicity was asymptomatic CPK elevation (69.6%). Other common ≥grade 2 toxicities included peripheral edema (17.4%), acneiform rash (21.7%), anemia (30.4%), hypophosphatemia (39.1%), and aspartate aminotransferase (AST) increase (17.4%). Two serious adverse events occurred (grade 2 dropped head syndrome and grade 3 central retinal vein occlusion). No unexpected toxicities were observed. Limited clinical activity was observed in KIT-mutant GIST. For SDH-deficient GISTs, one of five had confirmed RECIST1.1 partial response (PR). The median progression-free survival (mPFS) in patients with SDH-deficient GIST was 45.1 months [95% confidence interval (CI), 15.8-not estimable (NE)]; the median overall survival (mOS) was not reached (95% CI, 31.6 months-NE). One patient with a refractory metastatic SDH-deficient GIST had an exceptional pathologic response and durable clinical benefit. CONCLUSIONS: The combination of imatinib and binimetinib is safe with manageable toxicity and has encouraging activity in SDH-deficient but not imatinib-refractory KIT/PDGFRA-mutant GISTs. The observed clinical benefits provide a motivation for a larger trial of the combination strategy in SDH-deficient GISTs.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Gastrointestinal Neoplasms , Gastrointestinal Stromal Tumors , Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Benzimidazoles/therapeutic use , Gastrointestinal Neoplasms/drug therapy , Gastrointestinal Neoplasms/pathology , Gastrointestinal Stromal Tumors/drug therapy , Gastrointestinal Stromal Tumors/pathology , Humans , Imatinib Mesylate/therapeutic use
4.
J Clin Oncol ; 40(9): 997-1008, 2022 03 20.
Article in English | MEDLINE | ID: mdl-35041493

ABSTRACT

PURPOSE: Dual targeting of the gastrointestinal stromal tumor (GIST) lineage-specific master regulators, ETV1 and KIT, by MEK and KIT inhibitors were synergistic preclinically and may enhance clinical efficacy. This trial was designed to test the efficacy and safety of imatinib plus binimetinib in first-line treatment of GIST. METHODS: In this trial (NCT01991379), treatment-naive adult patients with confirmed advanced GISTs received imatinib (400 mg once daily) plus binimetinib (30 mg twice daily), 28-day cycles. The primary end point was RECIST1.1 best objective response rate (ORR; complete response plus partial response [PR]). The study was designed to detect a 20% improvement in the ORR over imatinib alone (unacceptable rate of 45%; acceptable rate of 65%), using an exact binomial test, one-sided type I error of 0.08 and type II error of 0.1, and a planned sample size of 44 patients. Confirmed PR or complete response in > 24 patients are considered positive. Secondary end points included Choi and European Organisation for Research and Treatment of Cancer Response Rate, progression-free survival (PFS), overall survival (OS), pathologic responses, and toxicity. RESULTS: Between September 15, 2014, and November 15, 2020, 29 of 42 evaluable patients with advanced GIST had confirmed RECIST1.1 PR. The best ORR was 69.0% (two-sided 95% CI, 52.9 to 82.4). Thirty-nine of 41 (95.1%) had Choi PR approximately 8 weeks. Median PFS was 29.9 months (95% CI, 24.2 to not estimable); median OS was not reached (95% CI, 50.4 to not estimable). Five of eight patients with locally advanced disease underwent surgery after treatment and achieved significant pathologic response (≥ 90% treatment effect). There were no unexpected toxicities. Grade 3 and 4 toxicity included asymptomatic creatinine phosphokinase elevation (79.1%), hypophosphatemia (14.0%), neutrophil decrease (9.3%), maculopapular rash (7.0%), and anemia (7.0%). CONCLUSION: The study met the primary end point. The combination of imatinib and binimetinib is effective with manageable toxicity and warrants further evaluation in direct comparison with imatinib in frontline treatment of GIST.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Gastrointestinal Stromal Tumors , Adult , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Benzimidazoles/therapeutic use , Gastrointestinal Stromal Tumors/drug therapy , Gastrointestinal Stromal Tumors/pathology , Humans , Imatinib Mesylate/therapeutic use , Treatment Outcome
5.
JAMA Oncol ; 6(3): 402-408, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31971541

ABSTRACT

Importance: Patients with advanced sarcoma have limited treatment options. Talimogene laherparepvec (T-VEC) has been shown to increase tumor-specific immune activation via augmenting antigen presentation and T-cell priming. Objective: To examine whether T-VEC in combination with pembrolizumab is associated with increased tumor-infiltrating lymphocyte infiltration and programmed death-ligand 1 expression and thus with increased antitumor activity in patients with locally advanced or metastatic sarcoma. Design, Setting, and Participants: This open-label, single-institution phase 2 interventional trial of T-VEC plus pembrolizumab enrolled 20 patients with locally advanced or metastatic sarcoma between March 16 and December 4, 2017, for whom at least 1 standard systemic therapy had failed. The median duration of therapy was 16 weeks (range, 7-67 weeks). Reported analyses include data through December 14, 2018. Intervention: Patients received pembrolizumab (200-mg flat dose) intravenously and T-VEC (first dose, ≤4 mL × 106 plaque-forming units [PFU]/mL; second and subsequent doses, ≤4 mL × 108 PFU/mL) injected into palpable tumor site(s) on day 1 of each 21-day cycle. Main Outcomes and Measures: The primary end point was objective response rate (ORR; complete response and partial response) at 24 weeks determined by Response Evaluation Criteria In Solid Tumors (RECIST), version 1.1, criteria. Secondary end points included best ORR by immune-related RECIST criteria, progression-free survival rate at 24 weeks, overall survival, and safety. Results: All 20 patients (12 women [60%]; median age, 63.5 years [range, 24-90 years]) were evaluable for response. The study met its primary end point of evaluating the best ORR at 24 weeks determined by RECIST, version 1.1, criteria; the best ORR was 30% (95% CI, 12%-54%; n = 6). The ORR overall was 35% (95% CI, 15%-59%; n = 7). The incidence of grade 3 treatment-related adverse events was low (4 patients [20%]). There were no grade 4 treatment-related adverse events or treatment-related deaths. Conclusions and Relevance: In this phase 2 clinical trial, treatment with T-VEC plus pembrolizumab was associated with antitumor activity in advanced sarcoma across a range of sarcoma histologic subtypes, with a manageable safety profile. This combination therapy met its predefined primary study end point; further evaluation of T-VEC in combination with pembrolizumab for patients with select sarcoma subtypes is planned. Trial Registration: ClinicalTrials.gov identifier: NCT03069378.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , Biological Products/therapeutic use , Oncolytic Virotherapy , Sarcoma/therapy , Adult , Aged , Aged, 80 and over , Combined Modality Therapy , Herpesvirus 1, Human , Humans , Middle Aged , Treatment Outcome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...