Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters











Publication year range
1.
Cancers (Basel) ; 14(20)2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36291816

ABSTRACT

BACKGROUND: As microRNA-142 (miR-142) is the only human microRNA gene where mutations have consistently been found in about 20% of all cases of diffuse large B-cell lymphoma (DLBCL), we wanted to determine the impact of miR-142 inactivation on protein expression of DLBCL cell lines. METHODS: miR-142 was deleted by CRISPR/Cas9 knockout in cell lines from DLBCL. RESULTS: By proteome analyses, miR-142 knockout resulted in a consistent up-regulation of 52 but also down-regulation of 41 proteins in GC-DLBCL lines BJAB and SUDHL4. Various mitochondrial ribosomal proteins were up-regulated in line with their pro-tumorigenic properties, while proteins necessary for MHC-I presentation were down-regulated in accordance with the finding that miR-142 knockout mice have a defective immune response. CFL2, CLIC4, STAU1, and TWF1 are known targets of miR-142, and we could additionally confirm AKT1S1, CCNB1, LIMA1, and TFRC as new targets of miR-142-3p or -5p. CONCLUSIONS: Seed-sequence mutants of miR-142 confirmed potential targets and novel targets of miRNAs can be identified in miRNA knockout cell lines. Due to the complex contribution of miRNAs within cellular regulatory networks, in particular when miRNAs highly present in RISC complexes are replaced by other miRNAs, primary effects on gene expression may be covered by secondary layers of regulation.

2.
Int J Mol Sci ; 22(23)2021 Dec 04.
Article in English | MEDLINE | ID: mdl-34884938

ABSTRACT

In pancreatic ß-cells of the line INS-1, glucose uptake and metabolism induce the openings of Ca2+-permeable TRPM3 channels that contribute to the elevation of the intracellular Ca2+ concentration and the fusion of insulin granules with the plasma membrane. Conversely, glucose-induced Ca2+ signals and insulin release are reduced by the activity of the serine/threonine kinase CK2. Therefore, we hypothesized that TRPM3 channels might be regulated by CK2 phosphorylation. We used recombinant TRPM3α2 proteins, native TRPM3 proteins from INS-1 ß-cells, and TRPM3-derived oligopeptides to analyze and localize CK2-dependent phosphorylation of TRPM3 channels. The functional consequences of CK2 phosphorylation upon TRPM3-mediated Ca2+ entry were investigated in Fura-2 Ca2+-imaging experiments. Recombinant TRPM3α2 channels expressed in HEK293 cells displayed enhanced Ca2+ entry in the presence of the CK2 inhibitor CX-4945 and their activity was strongly reduced after CK2 overexpression. TRPM3α2 channels were phosphorylated by CK2 in vitro at serine residue 1172. Accordingly, a TRPM3α2 S1172A mutant displayed enhanced Ca2+ entry. The TRPM3-mediated Ca2+ entry in INS-1 ß-cells was also strongly increased in the presence of CX-4945 and reduced after overexpression of CK2. Our study shows that CK2-mediated phosphorylation controls TRPM3 channel activity in INS-1 ß-cells.


Subject(s)
Casein Kinase II/metabolism , Insulin-Secreting Cells/metabolism , TRPM Cation Channels/metabolism , Animals , Calcium/metabolism , Casein Kinase II/antagonists & inhibitors , Casein Kinase II/genetics , Cell Line , HEK293 Cells , Humans , Mutation , Naphthyridines/pharmacology , Phenazines/pharmacology , Phosphorylation , Pregnenolone/pharmacology , Rats , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , TRPM Cation Channels/agonists , TRPM Cation Channels/genetics
3.
Sci Adv ; 7(41): eabg4074, 2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34623921

ABSTRACT

Chemosensory cues detected in the nose need to be integrated with the hormonal status to trigger appropriate behaviors, but the neural circuits linking the olfactory and the endocrine system are insufficiently understood. Here, we characterize olfactory sensory neurons in the murine nose that respond to the pituitary hormone prolactin. Deletion of prolactin receptor in these cells results in impaired detection of social odors and blunts male preference in females. The prolactin-responsive olfactory sensory neurons exhibit a distinctive projection pattern to the brain that is similar across different individuals and express a limited subset of chemosensory receptors. Prolactin modulates the responses within these neurons to discrete chemosensory cues contained in male urine, providing a mechanism by which the hormonal status can be directly linked with distinct olfactory cues to generate appropriate behavioral responses.

4.
Diabetes ; 70(11): 2532-2544, 2021 11.
Article in English | MEDLINE | ID: mdl-34426509

ABSTRACT

Voltage-gated Ca2+ (Cav) channels consist of a pore-forming Cavα1 subunit and auxiliary Cavα2-δ and Cavß subunits. In fibroblasts, Cavß3, independent of its role as a Cav subunit, reduces the sensitivity to low concentrations of inositol-1,4,5-trisphosphate (IP3). Similarly, Cavß3 could affect cytosolic calcium concentration ([Ca2 +]) in pancreatic ß-cells. In this study, we deleted the Cavß3-encoding gene Cacnb3 in insulin-secreting rat ß-(Ins-1) cells using CRISPR/Cas9. These cells were used as controls to investigate the role of Cavß3 on Ca2+ signaling, glucose-induced insulin secretion (GIIS), Cav channel activity, and gene expression in wild-type cells in which Cavß3 and the IP3 receptor were coimmunoprecipitated. Transcript and protein profiling revealed significantly increased levels of insulin transcription factor Mafa, CaMKIV, proprotein convertase subtilisin/kexin type-1, and nitric oxide synthase-1 in Cavß3-knockout cells. In the absence of Cavß3, Cav currents were not altered. In contrast, CREB activity, the amount of MAFA protein and GIIS, the extent of IP3-dependent Ca2+ release and the frequency of Ca2+ oscillations were increased. These processes were decreased by the Cavß3 protein in a concentration-dependent manner. Our study shows that Cavß3 interacts with the IP3 receptor in isolated ß-cells, controls IP3-dependent Ca2+-signaling independently of Cav channel functions, and thereby regulates insulin expression and its glucose-dependent release in a cell-autonomous manner.


Subject(s)
Calcium Channels, L-Type/metabolism , Calcium Channels/metabolism , Calcium Signaling/physiology , Insulin Secretion/physiology , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Animals , CREB-Binding Protein , CRISPR-Cas Systems , Calcium Channels/genetics , Calcium Channels, L-Type/genetics , Calcium Signaling/genetics , Cell Line, Tumor , Cytosol/metabolism , Gene Expression Regulation , Humans , Inositol 1,4,5-Trisphosphate Receptors/genetics , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Insulinoma/metabolism , Rats
5.
Cancers (Basel) ; 13(7)2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33918235

ABSTRACT

Nerve/glial antigen (NG)2 expression crucially determines the aggressiveness of glioblastoma multiforme (GBM). Recent evidence suggests that protein kinase CK2 regulates NG2 expression. Therefore, we investigated in the present study whether CK2 inhibition suppresses proliferation and migration of NG2-positive GBM cells. For this purpose, CK2 activity was suppressed in the NG2-positive cell lines A1207 and U87 by the pharmacological inhibitor CX-4945 and CRISPR/Cas9-mediated knockout of CK2α. As shown by quantitative real-time PCR, luciferase-reporter assays, flow cytometry and western blot, this significantly reduced NG2 gene and protein expression when compared to vehicle-treated and wild type controls. In addition, CK2 inhibition markedly reduced NG2-dependent A1207 and U87 cell proliferation and migration. The Cancer Genome Atlas (TCGA)-based data further revealed not only a high expression of both NG2 and CK2 in GBM but also a positive correlation between the mRNA expression of the two proteins. Finally, we verified a decreased NG2 expression after CX-4945 treatment in patient-derived GBM cells. These findings indicate that the inhibition of CK2 represents a promising approach to suppress the aggressive molecular signature of NG2-positive GBM cells. Therefore, CX-4945 may be a suitable drug for the future treatment of NG2-positive GBM.

6.
Int J Mol Sci ; 21(24)2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33352987

ABSTRACT

Calcium-selective transient receptor potential Vanilloid 6 (TRPV6) channels are expressed in fetal labyrinth trophoblasts as part of the feto-maternal barrier, necessary for sufficient calcium supply, embryo growth, and bone development during pregnancy. Recently, we have shown a less- compact labyrinth morphology of Trpv6-deficient placentae, and reduced Ca2+ uptake of primary trophoblasts upon functional deletion of TRPV6. Trpv6-/- trophoblasts show a distinct calcium-dependent phenotype. Deep proteomic profiling of wt and Trpv6-/- primary trophoblasts using label-free quantitative mass spectrometry leads to the identification of 2778 proteins. Among those, a group of proteases, including high-temperature requirement A serine peptidase 1 (HTRA1) and different granzymes are more abundantly expressed in Trpv6-/- trophoblast lysates, whereas the extracellular matrix protein fibronectin and the fibronectin-domain-containing protein 3A (FND3A) were markedly reduced. Trpv6-/-placenta lysates contain a higher intrinsic proteolytic activity increasing fibronectin degradation. Our results show that the extracellular matrix formation of the placental labyrinth depends on TRPV6; its deletion in trophoblasts correlates with the increased expression of proteases controlling the extracellular matrix in the labyrinth during pregnancy.


Subject(s)
Extracellular Matrix/metabolism , Placenta/metabolism , TRPV Cation Channels/metabolism , Biological Transport , Biomarkers , Calcium/metabolism , Cell Movement/genetics , Cell Survival/genetics , Computational Biology , Female , Gene Knockdown Techniques , Humans , Pregnancy , Proteolysis , Proteome , Proteomics , TRPV Cation Channels/genetics
7.
Proc Natl Acad Sci U S A ; 117(46): 29090-29100, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33122432

ABSTRACT

TRPM3 channels play important roles in the detection of noxious heat and in inflammatory thermal hyperalgesia. The activity of these ion channels in somatosensory neurons is tightly regulated by µ-opioid receptors through the signaling of Gßγ proteins, thereby reducing TRPM3-mediated pain. We show here that Gßγ directly binds to a domain of 10 amino acids in TRPM3 and solve a cocrystal structure of this domain together with Gßγ. Using these data and mutational analysis of full-length proteins, we pinpoint three amino acids in TRPM3 and their interacting partners in Gß1 that are individually necessary for TRPM3 inhibition by Gßγ. The 10-amino-acid Gßγ-interacting domain in TRPM3 is subject to alternative splicing. Its inclusion in or exclusion from TRPM3 channel proteins therefore provides a mechanism for switching on or off the inhibitory action that Gßγ proteins exert on TRPM3 channels.


Subject(s)
GTP-Binding Protein beta Subunits/metabolism , GTP-Binding Protein beta Subunits/pharmacology , GTP-Binding Protein gamma Subunits/metabolism , GTP-Binding Protein gamma Subunits/pharmacology , TRPM Cation Channels/chemistry , TRPM Cation Channels/drug effects , TRPM Cation Channels/metabolism , Binding Sites , Calcium/metabolism , GTP-Binding Protein beta Subunits/chemistry , GTP-Binding Protein gamma Subunits/chemistry , HEK293 Cells , Humans , Hyperalgesia/metabolism , Models, Molecular , Mutation , Neurons/metabolism , Pain/metabolism , Receptors, Opioid/metabolism , TRPM Cation Channels/genetics
8.
Cell Calcium ; 73: 40-52, 2018 07.
Article in English | MEDLINE | ID: mdl-29880196

ABSTRACT

TRPM3 proteins assemble to Ca2+-permeable cation channels in the plasma membrane, which act as nociceptors of noxious heat and mediators of insulin and cytokine release. Here we show that TRPM3 channel activity is strongly dependent on intracellular Ca2+. Conceivably, this effect is attributed to the Ca2+ binding protein calmodulin, which binds to TRPM3 in a Ca2+-dependent manner. We identified five calmodulin binding sites within the amino terminus of TRPM3, which displayed different binding affinities in dependence of Ca2+. Mutations of lysine residues in calmodulin binding site 2 strongly reduced calmodulin binding and TRPM3 activity indicating the importance of this domain for TRPM3-mediated Ca2+ signaling. Our data show that TRPM3 channels are regulated by intracellular Ca2+ and provide the basis for a mechanistic understanding of the regulation of TRPM3 by calmodulin.


Subject(s)
Calcium/metabolism , Calmodulin/metabolism , TRPM Cation Channels/metabolism , Amino Acid Sequence , Binding Sites/drug effects , Binding Sites/physiology , Calcium/pharmacology , Calcium Signaling/drug effects , Calcium Signaling/physiology , Calmodulin/genetics , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Photolysis/drug effects , TRPM Cation Channels/genetics
9.
Elife ; 62017 08 15.
Article in English | MEDLINE | ID: mdl-28826482

ABSTRACT

Opioids, agonists of µ-opioid receptors (µORs), are the strongest pain killers clinically available. Their action includes a strong central component, which also causes important adverse effects. However, µORs are also found on the peripheral endings of nociceptors and their activation there produces meaningful analgesia. The cellular mechanisms downstream of peripheral µORs are not well understood. Here, we show in neurons of murine dorsal root ganglia that pro-nociceptive TRPM3 channels, present in the peripheral parts of nociceptors, are strongly inhibited by µOR activation, much more than other TRP channels in the same compartment, like TRPV1 and TRPA1. Inhibition of TRPM3 channels occurs via a short signaling cascade involving Gßγ proteins, which form a complex with TRPM3. Accordingly, activation of peripheral µORs in vivo strongly attenuates TRPM3-dependent pain. Our data establish TRPM3 inhibition as important consequence of peripheral µOR activation indicating that pharmacologically antagonizing TRPM3 may be a useful analgesic strategy.


Subject(s)
GTP-Binding Protein beta Subunits/metabolism , GTP-Binding Protein beta Subunits/pharmacology , GTP-Binding Protein gamma Subunits/metabolism , GTP-Binding Protein gamma Subunits/pharmacology , Receptors, Opioid, mu/metabolism , TRPM Cation Channels/drug effects , Analgesics, Opioid/agonists , Animals , Behavior Rating Scale , Calcium/metabolism , Calcium Signaling/physiology , Ganglia, Spinal/metabolism , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Neurons/metabolism , Nociceptors/physiology , Pain/metabolism , Receptors, Opioid/metabolism , TRPA1 Cation Channel/metabolism , TRPV Cation Channels/metabolism
10.
Glia ; 65(9): 1535-1549, 2017 09.
Article in English | MEDLINE | ID: mdl-28636132

ABSTRACT

Following brain injury astrocytes change into a reactive state, proliferate and grow into the site of lesion, a process called astrogliosis, initiated and regulated by changes in cytoplasmic Ca2+ . Transient receptor potential canonical (TRPC) channels may contribute to Ca2+ influx but their presence and possible function in astrocytes is not known. By RT-PCR and RNA sequencing we identified transcripts of Trpc1, Trpc2, Trpc3, and Trpc4 in FACS-sorted glutamate aspartate transporter (GLAST)-positive cultured mouse cortical astrocytes and subcloned full-length Trpc1 and Trpc3 cDNAs from these cells. Ca2+ entry in cortical astrocytes depended on TRPC3 and was increased in the absence of Trpc1. After co-expression of Trpc1 and Trpc3 in HEK-293 cells both proteins co-immunoprecipitate and form functional heteromeric channels, with TRPC1 reducing TRPC3 activity. In vitro, lack of Trpc3 reduced astrocyte proliferation and migration whereas the TRPC3 gain-of-function moonwalker mutation and Trpc1 deficiency increased astrocyte migration. In vivo, astrogliosis and cortex edema following stab wound injury were reduced in Trpc3-/- but increased in Trpc1-/- mice. In summary, our results show a decisive contribution of TRPC3 to astrocyte Ca2+ signaling, which is even augmented in the absence of Trpc1, in particular following brain injury. Targeted therapies to reduce TRPC3 channel activity in astrocytes might therefore be beneficial in traumatic brain injury.


Subject(s)
Astrocytes/metabolism , Calcium Signaling/physiology , Cerebral Cortex/injuries , Gliosis/metabolism , TRPC Cation Channels/metabolism , Animals , Astrocytes/pathology , Brain Edema/etiology , Brain Edema/metabolism , Brain Edema/pathology , Cell Movement/physiology , Cell Proliferation/physiology , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Disease Models, Animal , Gliosis/etiology , Gliosis/pathology , HEK293 Cells , Humans , Male , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , TRPC Cation Channels/genetics , TRPC6 Cation Channel , Wounds, Stab/metabolism , Wounds, Stab/pathology
11.
Cell Calcium ; 67: 156-165, 2017 11.
Article in English | MEDLINE | ID: mdl-28416203

ABSTRACT

Transient receptor potential (TRP) channels are cation channels which participate in a wide variety of physiological processes in organisms ranging from fungi to humans. They fulfill roles in body homeostasis, are sensors for noxious chemicals and temperature in the mammalian somatosensory system and are activated by light stimulated phospholipase C activity in Drosophila or by hypertonicity in yeast. The transmembrane topology of TRP channels is similar to that of voltage-gated cation channels. TRP proteins assemble as tetramers with each subunit containing six transmembrane helices (S1-S6) and intracellular N- and C-termini. Here we focus on the emerging functions of the cytosolic S4-S5 linker on TRP channel gating. Most of this knowledge comes from pathogenic mutations within the S4-S5 linker that alter TRP channel activities. This knowledge has stimulated forward genetic approaches to identify additional residues around this region which are essential for channel gating and is supported, in part, by recent structures obtained for TRPV1, TRPV2, TRPV6, TRPA1, and TRPP2.


Subject(s)
Channelopathies/genetics , Ion Channel Gating/genetics , Mutation , Transient Receptor Potential Channels/chemistry , Amino Acid Sequence , Animals , Channelopathies/classification , Channelopathies/metabolism , Channelopathies/pathology , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Gene Expression , Humans , Kinetics , Membrane Potentials/physiology , Models, Molecular , Protein Conformation, alpha-Helical , Protein Multimerization , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Sequence Homology, Amino Acid , Transient Receptor Potential Channels/genetics , Transient Receptor Potential Channels/metabolism
12.
FEBS Lett ; 591(1): 76-87, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27987306

ABSTRACT

A screen to identify lysosomal-expressed ion channels led to the discovery of the human Sidt2 protein. Sidt2 is expressed within lysosomal organelles but as a result of heterologous overexpression the protein is also detectable within the plasma membrane of human embryonic kidney cells. The overexpressed protein leads to cell depolarization upon sodium addition. Accordingly in whole-cell patch clamp experiments a spontaneous noninactivating monovalent cation current can be detected in Sidt2-overexpressing cells. Strong overexpression of Sidt2 in HEK293 cells is attended by a significant reduction/loss of detectable lysosomes, indicating that the overexpressed protein leads to lysosomal dysfunction, a hallmark of Alzheimer's disease. Sidt2 is located on chromosome 11q23, a locus repeatedly found by chromosomal mapping of Alzheimer's disease-related genes.


Subject(s)
Lysosomes/metabolism , Membrane Proteins/metabolism , Nucleotide Transport Proteins/metabolism , Alzheimer Disease/pathology , Amines , Animals , Cations , Cell Membrane/metabolism , Cell Shape , Cell Size , Electric Conductivity , Evolution, Molecular , HEK293 Cells , Humans , Lysosomal Membrane Proteins/metabolism , Membrane Potentials , Membrane Proteins/genetics , Mice , Nucleotide Transport Proteins/genetics , Sodium/metabolism , Transfection
13.
BMC Mol Biol ; 17: 8, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26979160

ABSTRACT

BACKGROUND: The majority of protein isoforms arise from alternative splicing of the encoding primary RNA transcripts. To understand the significance of single splicing events, reliable techniques are needed to determine their incidence. However, existing methods are labour-intensive, error-prone or of limited use. RESULTS: Here, we present an improved method to determine the relative incidence of transcripts that arise from alternative splicing at a single site. Splice variants were quantified within a single sample using one-step reverse transcription quantitative PCR. Amplification products obtained with variant specific primer pairs were compared to those obtained with primer pairs common to both variants. The identities of variant specific amplicons were simultaneously verified by melt curve analysis. Independent calculations of the relative incidence of each variant were performed. Since the relative incidences of variants have to add upto 100%, the method provides an internal control to monitor experimental errors and uniform reverse transcription. The reliability of the method was tested using mixtures of cDNA templates as well as RNA samples from different sources. CONCLUSION: The method described here, is easy to set up and does not need unrelated reference genes and time consuming, error-prone standard curves. It provides a reliable and precise technique to distinguish small differences of the relative incidence of two splice variants.


Subject(s)
Alternative Splicing , RNA, Messenger , Real-Time Polymerase Chain Reaction , Animals , Brain/metabolism , Gene Expression , Genes, Reporter , Mice , RNA Splice Sites , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/standards , Reproducibility of Results , TRPM Cation Channels/genetics
14.
Eur Heart J ; 36(33): 2257-66, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26069213

ABSTRACT

AIMS: Pathological cardiac hypertrophy is a major predictor for the development of cardiac diseases. It is associated with chronic neurohumoral stimulation and with altered cardiac Ca(2+) signalling in cardiomyocytes. TRPC proteins form agonist-induced cation channels, but their functional role for Ca(2+) homeostasis in cardiomyocytes during fast cytosolic Ca(2+) cycling and neurohumoral stimulation leading to hypertrophy is unknown. METHODS AND RESULTS: In a systematic analysis of multiple knockout mice using fluorescence imaging of electrically paced adult ventricular cardiomyocytes and Mn(2+)-quench microfluorimetry, we identified a background Ca(2+) entry (BGCE) pathway that critically depends on TRPC1/C4 proteins but not others such as TRPC3/C6. Reduction of BGCE in TRPC1/C4-deficient cardiomyocytes lowers diastolic and systolic Ca(2+) concentrations both, under basal conditions and under neurohumoral stimulation without affecting cardiac contractility measured in isolated hearts and in vivo. Neurohumoral-induced cardiac hypertrophy as well as the expression of foetal genes (ANP, BNP) and genes regulated by Ca(2+)-dependent signalling (RCAN1-4, myomaxin) was reduced in TRPC1/C4 knockout (DKO), but not in TRPC1- or TRPC4-single knockout mice. Pressure overload-induced hypertrophy and interstitial fibrosis were both ameliorated in TRPC1/C4-DKO mice, whereas they did not show alterations in other cardiovascular parameters contributing to systemic neurohumoral-induced hypertrophy such as renin secretion and blood pressure. CONCLUSIONS: The constitutively active TRPC1/C4-dependent BGCE fine-tunes Ca(2+) cycling in beating adult cardiomyocytes. TRPC1/C4-gene inactivation protects against development of maladaptive cardiac remodelling without altering cardiac or extracardiac functions contributing to this pathogenesis.


Subject(s)
Calcium Channels/physiology , Calcium Signaling/physiology , Cardiomegaly/metabolism , Myocytes, Cardiac/metabolism , TRPC Cation Channels/physiology , Angiotensin II/metabolism , Angiotensinogen/metabolism , Animals , Calcium/metabolism , Cardiomegaly/physiopathology , Hemodynamics/physiology , Homeostasis/physiology , Mice, Knockout , Ventricular Remodeling
15.
Handb Exp Pharmacol ; 222: 427-59, 2014.
Article in English | MEDLINE | ID: mdl-24756716

ABSTRACT

Like most other members of the TRP family, the Trpm3 gene encodes proteins that form cation-permeable ion channels on the plasma membrane. However, TRPM3 proteins have several unique features that set them apart from the other members of this diverse family. The Trpm3 gene encodes for a surprisingly large number of isoforms generated mainly by alternative splicing. Only for two of the (at least) eight sites at which sequence diversity is generated the functional consequences have been elucidated, one leading to nonfunctional channels, the other one profoundly affecting the ionic selectivity. In the Trpm3 gene an intronic microRNA (miR-204) is co-transcribed with Trpm3. By regulating the expression of a multitude of genes, miR-204 increases the functional complexity of the Trpm3 locus. Over the past years, important progress has been made in discovering pharmacological tools to manipulate TRPM3 channel activity. These substances have facilitated the identification of endogenously expressed functional TRPM3 channels in nociceptive neurons, pancreatic beta cells, and vascular smooth muscle cells, among others. TRPM3 channels, which themselves are temperature sensitive, thus have been implicated in sensing noxious heat, in modulating insulin release, and in secretion of inflammatory cytokines. However, in many tissues where TRPM3 proteins are known to be expressed, no functional role has been identified for these channels so far. Because of the availability of adequate pharmacological and genetic tools, it is expected that future investigations on TRPM3 channels will unravel important new aspects and functions of these channels.


Subject(s)
TRPM Cation Channels/metabolism , Animals , Gene Expression Regulation , Genetic Predisposition to Disease , Humans , Membrane Potentials , Mice , Mice, Knockout , MicroRNAs/metabolism , Phenotype , Protein Conformation , Signal Transduction , Structure-Activity Relationship , TRPM Cation Channels/chemistry , TRPM Cation Channels/deficiency , TRPM Cation Channels/genetics
16.
PLoS One ; 8(6): e67697, 2013.
Article in English | MEDLINE | ID: mdl-23840765

ABSTRACT

Red blood cells (RBCs) are among the most intensively studied cells in natural history, elucidating numerous principles and ground-breaking knowledge in cell biology. Morphologically, RBCs are largely homogeneous, and most of the functional studies have been performed on large populations of cells, masking putative cellular variations. We studied human and mouse RBCs by live-cell video imaging, which allowed single cells to be followed over time. In particular we analysed functional responses to hormonal stimulation with lysophosphatidic acid (LPA), a signalling molecule occurring in blood plasma, with the Ca(2+) sensor Fluo-4. Additionally, we developed an approach for analysing the Ca(2+) responses of RBCs that allowed the quantitative characterization of single-cell signals. In RBCs, the LPA-induced Ca(2+) influx showed substantial diversity in both kinetics and amplitude. Also the age-classification was determined for each particular RBC and consecutively analysed. While reticulocytes lack a Ca(2+) response to LPA stimulation, old RBCs approaching clearance generated robust LPA-induced signals, which still displayed broad heterogeneity. Observing phospatidylserine exposure as an effector mechanism of intracellular Ca(2+) revealed an even increased heterogeneity of RBC responses. The functional diversity of RBCs needs to be taken into account in future studies, which will increasingly require single-cell analysis approaches. The identified heterogeneity in RBC responses is important for the basic understanding of RBC signalling and their contribution to numerous diseases, especially with respect to Ca(2+) influx and the associated pro-thrombotic activity.


Subject(s)
Erythrocytes/drug effects , Erythrocytes/physiology , Aniline Compounds/pharmacology , Animals , Calcium/metabolism , Erythrocytes/metabolism , Humans , Lysophospholipids/pharmacology , Mice , Reticulocytes/drug effects , Reticulocytes/metabolism , Single-Cell Analysis/methods , Xanthenes/pharmacology
17.
Sci Signal ; 6(281): ra50, 2013 Jun 25.
Article in English | MEDLINE | ID: mdl-23800468

ABSTRACT

Blood platelet aggregation must be tightly controlled to promote clotting at injury sites but avoid inappropriate occlusion of blood vessels. Thrombin, which cleaves and activates Gq-coupled protease-activated receptors, and collagen-related peptide, which activates the receptor glycoprotein VI, stimulate platelets to aggregate and form thrombi. Coincident activation by these two agonists synergizes, causing the exposure of phosphatidylserine on the cell surface, which is a marker of cell death in many cell types. Phosphatidylserine exposure is also essential to produce additional thrombin on platelet surfaces, which contributes to thrombosis. We found that activation of either thrombin receptors or glycoprotein VI alone produced a calcium signal that was largely dependent only on store-operated Ca(2+) entry. In contrast, experiments with platelets from knockout mice showed that the presence of both ligands activated nonselective cation channels of the transient receptor potential C (TRPC) family, TRPC3 and TRPC6. These channels principally allowed entry of Na(+), which coupled to reverse-mode Na(+)/Ca(2+) exchange to allow calcium influx and thereby contribute to Ca(2+) signaling and phosphatidylserine exposure. Thus, TRPC channels act as coincidence detectors to coordinate responses to multiple signals in cells, thereby indirectly mediating in platelets an increase in intracellular calcium concentrations and exposure of prothrombotic phosphatidylserine.


Subject(s)
Phosphatidylserines/metabolism , Signal Transduction/physiology , TRPC Cation Channels/physiology , Adult , Anilides/pharmacology , Animals , Benzyl Compounds/pharmacology , Blood Platelets/drug effects , Blood Platelets/metabolism , Calcium/metabolism , Carrier Proteins/pharmacology , Female , Humans , Immunoblotting , Male , Mice , Mice, Knockout , Middle Aged , Models, Biological , Peptides/pharmacology , Signal Transduction/genetics , Sodium/metabolism , Sodium-Calcium Exchanger/antagonists & inhibitors , Sodium-Calcium Exchanger/metabolism , TRPC Cation Channels/genetics , TRPC Cation Channels/metabolism , TRPC6 Cation Channel , Thiadiazoles/pharmacology , Thiazolidines/pharmacology , Thrombin/pharmacology , Young Adult
18.
Cancer Cell ; 23(6): 811-25, 2013 Jun 10.
Article in English | MEDLINE | ID: mdl-23764003

ABSTRACT

Despite success with BRAFV600E inhibitors, therapeutic responses in patients with metastatic melanoma are short-lived because of the acquisition of drug resistance. We identified a mechanism of intrinsic multidrug resistance based on the survival of a tumor cell subpopulation. Treatment with various drugs, including cisplatin and vemurafenib, uniformly leads to enrichment of slow-cycling, long-term tumor-maintaining melanoma cells expressing the H3K4-demethylase JARID1B/KDM5B/PLU-1. Proteome-profiling revealed an upregulation in enzymes of mitochondrial oxidative-ATP-synthesis (oxidative phosphorylation) in this subpopulation. Inhibition of mitochondrial respiration blocked the emergence of the JARID1B(high) subpopulation and sensitized melanoma cells to therapy, independent of their genotype. Our findings support a two-tiered approach combining anticancer agents that eliminate rapidly proliferating melanoma cells with inhibitors of the drug-resistant slow-cycling subpopulation.


Subject(s)
Drug Resistance, Neoplasm , Jumonji Domain-Containing Histone Demethylases/metabolism , Melanoma/metabolism , Nuclear Proteins/metabolism , Repressor Proteins/metabolism , Antineoplastic Agents/pharmacology , Cisplatin/pharmacology , Electron Transport/drug effects , Gene Knockdown Techniques , Humans , Indoles/pharmacology , Jumonji Domain-Containing Histone Demethylases/genetics , Melanoma/drug therapy , Melanoma/genetics , Melanoma/pathology , Nuclear Proteins/genetics , Oligomycins/pharmacology , Repressor Proteins/genetics , Sulfonamides/pharmacology , Vemurafenib
19.
J Biol Chem ; 288(27): 19471-83, 2013 Jul 05.
Article in English | MEDLINE | ID: mdl-23677990

ABSTRACT

TRPC4 and TRPC5 proteins share 65% amino acid sequence identity and form Ca(2+)-permeable nonselective cation channels. They are activated by stimulation of receptors coupled to the phosphoinositide signaling cascade. Replacing a conserved glycine residue within the cytosolic S4-S5 linker of both proteins by a serine residue forces the channels into an open conformation. Expression of the TRPC4G503S and TRPC5G504S mutants causes cell death, which could be prevented by buffering the Ca(2+) of the culture medium. Current-voltage relationships of the TRPC4G503S and TRPC5G504S mutant ion channels resemble that of fully activated TRPC4 and TRPC5 wild-type channels, respectively. Modeling the structure of the transmembrane domains and the pore region (S4-S6) of TRPC4 predicts a conserved serine residue within the C-terminal sequence of the predicted S6 helix as a potential interaction site. Introduction of a second mutation (S623A) into TRPC4G503S suppressed the constitutive activation and partially rescued its function. These results indicate that the S4-S5 linker is a critical constituent of TRPC4/C5 channel gating and that disturbance of its sequence allows channel opening independent of any sensor domain.


Subject(s)
Ion Channel Gating/physiology , TRPC Cation Channels/metabolism , Amino Acid Substitution , Animals , HEK293 Cells , Humans , Mice , Models, Molecular , Mutation, Missense , Peptide Mapping , Protein Structure, Secondary , Protein Structure, Tertiary , Rats , TRPC Cation Channels/genetics
20.
J Biol Chem ; 287(44): 36663-72, 2012 Oct 26.
Article in English | MEDLINE | ID: mdl-22961981

ABSTRACT

TRPM3 channels form ionotropic steroid receptors in the plasma membrane of pancreatic ß and dorsal root ganglion cells and link steroid hormone signaling to insulin release and pain perception, respectively. We identified and compared the function of a number of TRPM3 splice variants present in mouse, rat and human tissues. We found that variants lacking a region of 18 amino acid residues display neither Ca(2+) entry nor ionic currents when expressed alone. Hence, splicing removes a region that is indispensable for channel function, which is called the ICF region. TRPM3 variants devoid of this region (TRPM3ΔICF), are ubiquitously present in different tissues and cell types where their transcripts constitute up to 15% of the TRPM3 isoforms. The ICF region is conserved throughout the TRPM family, and its presence in TRPM8 proteins is also necessary for function. Within the ICF region, 10 amino acid residues form a domain essential for the formation of operative TRPM3 channels. TRPM3ΔICF variants showed reduced interaction with other TRPM3 isoforms, and their occurrence at the cell membrane was diminished. Correspondingly, coexpression of ΔICF proteins with functional TRPM3 subunits not only reduced the number of channels but also impaired TRPM3-mediated Ca(2+) entry. We conclude that TRPM3ΔICF variants are regulatory channel subunits fine-tuning TRPM3 channel activity.


Subject(s)
Alternative Splicing , TRPM Cation Channels/genetics , Amino Acid Sequence , Animals , Calcium Signaling , Conserved Sequence , Exons , HEK293 Cells , Humans , Immunoprecipitation , Membrane Potentials , Mice , Molecular Sequence Data , Patch-Clamp Techniques , Protein Binding , Protein Interaction Domains and Motifs , Protein Interaction Mapping , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA Splice Sites , Rats , Sequence Homology, Amino Acid , TRPM Cation Channels/chemistry , TRPM Cation Channels/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL