Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters











Publication year range
1.
Eur Phys J E Soft Matter ; 43(6): 38, 2020 Jun 19.
Article in English | MEDLINE | ID: mdl-32556853

ABSTRACT

Although there are theoretical predictions (Eur. Phys. J. E 41, 110 (2018)) for the rich-phase behaviour of colloidal cubes mixed with non-adsorbing polymers, a thorough verification of this phase behaviour is still underway; experimental studies on mixtures of cubes and non-adsorbing polymers in bulk are scarce. In this paper, mixtures of hollow silica nanocubes and linear polystyrene in N,-N-dimethylformamide are used to measure the structure factor of the colloidal cubes as a function of non-adsorbing polymer concentration. Together with visual observations these structure factors enabled us to assess the depletion-mediated phase stability of cube-polymer mixtures. The theoretical and experimental phase boundaries for cube-depletant mixtures are in remarkable agreement, despite the simplifications underlying the theory employed.

2.
J Colloid Interface Sci ; 571: 267-274, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32203763

ABSTRACT

HYPOTHESIS: The shape of colloidal particles affects the structure of colloidal dispersions. The effect of the cube shape on the thermodynamics of colloidal cube dispersions has not yet been studied experimentally. Static light scattering measurements on colloidal cubic silica shells at finite concentrations allows us to measure the structure factor of colloidal cube fluids and to test theoretical predictions for the equation of state of hard convex superballs. EXPERIMENTS: Hollow silica nanocubes of varying concentrations in N,N,-dimethylformamide were studied with static light scattering. The structure factor was extracted from the scattering curves using experimental form factors. From this experimental structure factor, the specific density of the particles, and the osmotic compressibility were obtained. This osmotic compressibility was then compared to a theoretical equation of state of hard superballs. FINDINGS: The first experimental structure factors of a stable cube fluid are presented. The osmotic compressibility of the cube fluid can be described by the equation of state of a hard superball fluid, showing that silica cubes in N,N,-dimethylformamide with LiCl effectively interact as hard particles.

3.
J Colloid Interface Sci ; 571: 419-428, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-31813577

ABSTRACT

HYPOTHESIS: Colloidal cubic silica shells, prepared from cuprous oxide cubes, with a typical size of 100 nm are promising model particles for scattering studies on dilute, as well as concentrated fluids, of non-spherical colloids. EXPERIMENTS: Small angle X-ray scattering, and static light scattering are employed to determine form factors of cubic silica shells and silica covered cuprous oxide cubes. Contrast variation experiments are performed to assess the refractive index and optical homogeneity of the cubic silica shells, which is important for the extension of the scattering study to concentrated dispersions of cubic shells in Part II (Dekker, submitted for publication). RESULTS: The experimental form factors, which compare well to theoretical form factors, manifest cubic silica shells that are dispersed as single stable colloids with a shape intermediate between a sphere and a perfect cube. Contrast variation demonstrates that the silica shells are optically homogeneous, with a refractive index that is independent of the shell thickness. The results presented here open up the possibility to extract structure factors from light scattering measurements on concentrated cube dispersions in Part II.

4.
J Phys Chem B ; 118(37): 11000-5, 2014 Sep 18.
Article in English | MEDLINE | ID: mdl-25153168

ABSTRACT

Cryogenic transmission electron microscopy (cryo-TEM) is utilized to determine the second virial coefficient of osmotic pressure of PbSe quantum dots (QDs) dispersed in apolar liquid. Cryo-TEM images from vitrified samples provide snapshots of the equilibrium distribution of the particles. These snapshots yield radial distribution functions from which second virial coefficients are calculated, which agree with second virial coefficients determined with analytical centrifugation and small-angle X-ray scattering. The size dependence of the second virial coefficient points to an interparticle interaction that is proportional to the QD surface area. A plausible cause for this attraction is the interaction between the surface ions on adjacent QDs.

5.
J Colloid Interface Sci ; 422: 65-70, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24655830

ABSTRACT

Electroacoustics and laser Doppler electrophoresis were employed to measure the mobility of surface-modified silica colloids in ethanol as a function of the ionic strength. Sufficiently low volume fractions were chosen to exclude effects of interparticle interactions. At high ionic strength, the electrophoretic mobility µ(e) is equal to the (electroacoustic) dynamic mobility µ(d) at 3.3 MHz. However, the ratio µ(d)/µ(e) increases significantly to ∼5 at low ionic strength. This increase may be related to the porous outer layer of the surface-modified silica spheres.

6.
J Phys Condens Matter ; 24(24): 245101, 2012 Jun 20.
Article in English | MEDLINE | ID: mdl-22569199

ABSTRACT

This paper describes an integrated setup for fluorescence recovery after photobleaching (FRAP) for determining translational and rotational Brownian diffusion simultaneously, ensuring that these two quantities are measured under exactly the same conditions and at the same time in dynamic experiments. The setup is based on translational-FRAP with a fringe pattern of light for both the bleaching and monitoring of fluorescently labeled particles, and rotational-FRAP, which uses the polarization of a short bleach light pulse to create a polarization anisotropy. The fringe pattern of the probe beam is modulated in conjunction with a synchronized lock-in amplifier giving a fast, sensitive, ensemble-averaged measurement compared to microscope-image based techniques. The experimental polarization geometry we used ensures that the fluorescence emission is collected without polarization bias. Therefore, only the orientation of the absorption dipole moment of the fixed dye in the particles is measured, which simplifies interpretation of the data. The polarization is modulated rapidly between two orthogonal polarization states, giving the polarization anisotropy in one, single measurement. The rotational and translational Brownian diffusion of anisotropic colloids is measured for ellipsoids of revolution. This experiment shows that in this case the rotational correlation function matches a three-exponential decay in accordance with theoretical predictions.


Subject(s)
Colloids/chemistry , Fluorescence Recovery After Photobleaching/methods , Rotation , Anisotropy , Diffusion , Time Factors
7.
Opt Express ; 17(3): 1222-33, 2009 Feb 02.
Article in English | MEDLINE | ID: mdl-19188949

ABSTRACT

Light scattering techniques are widely used in many fields of condensed and soft matter physics. Usually these methods are based on the study of the scattered light in the far field. Recently, a new family of near field detection schemes has been developed, mainly for the study of small angle light scattering. These techniques are based on the detection of the light intensity near to the sample, where light scattered at different directions overlaps but can be distinguished by Fourier transform analysis. Here we report for the first time data obtained with a dynamic near field scattering instrument, measuring both polarized and depolarized scattered light. Advantages of this procedure over the traditional far field detection include the immunity to stray light problems and the possibility to obtain a large number of statistical samples for many different wave vectors in a single instantaneous measurement. By using the proposed technique we have measured the translational and rotational diffusion coefficients of rod-like colloidal particles. The obtained data are in very good agreement with the data acquired with a traditional light scattering apparatus.

8.
Langmuir ; 23(21): 10486-92, 2007 Oct 09.
Article in English | MEDLINE | ID: mdl-17824624

ABSTRACT

Charge-stabilized dispersions of inorganic colloids are shown to induce spontaneous emulsification of hydrophobic (TPM) molecules to stable oil-in-water emulsions, with monodisperse, mesoscopic oil droplet diameters in the range of 30-150 nm, irrespective of the polydispersity of the starting dispersions. The results for cobalt ferrite particles and commercial silica sols extend our first study (Sacanna, S.; Kegel, W. K.; Philipse, A. Phys. Rev. Lett. 2007, 98, 158301) on spontaneous emulsification induced by charged magnetite colloids and show that this type of self-assembly is quite generic with respect to the composition of the nanoparticles adsorbing at the oil-water interface. Moreover, we provide additional experimental evidence for the thermodynamic stability of these mesoemulsions, including spontaneous oil dispersal imaged by confocal microscopy and monitored in situ by time-resolved dynamic light scattering. We discuss the possibility that thermodynamic stability of the emulsions is provided by the negative tension of the three-phase line between oil, water, and adsorbed colloids.

9.
Langmuir ; 23(20): 9974-82, 2007 Sep 25.
Article in English | MEDLINE | ID: mdl-17727298

ABSTRACT

We report on the preparation of a novel type of particle-stabilized oil-in-water emulsions. The emulsification mechanism comprises partial hydrolysis of the oil phase promoted by the alkaline surface of ellipsoidal hematite colloids stabilized by tetramethylammonium hydroxide. This mechanism yields monodisperse oil droplets with embedded single ellipsoidal particles. The emulsions, which are stable for at least several months, can be polymerized by radical initiation, to yield latex-like particles with interesting optical and magnetic properties due to their anisotropic hematite cores. Moreover, we show that complex composite core-shell colloids can be prepared by PMMA growth and silica deposition on polymerized emulsion droplets. Finally, as an example of a possible application for our system, we have measured translational and rotational diffusion coefficients of hematite-stabilized oil droplets by depolarized dynamic light scattering. The latter technique can also be employed to monitor the spontaneous emulsification in time.

10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 75(5 Pt 1): 051408, 2007 May.
Article in English | MEDLINE | ID: mdl-17677066

ABSTRACT

Field-induced structure formation in a ferrofluid with well-defined magnetite nanoparticles with a permanent magnetic dipole moment was studied with small-angle neutron scattering (SANS) as a function of the magnetic interactions. The interactions were tuned by adjusting the size of the well-defined, single-magnetic-domain magnetite (Fe3O4) particles and by applying an external magnetic field. For decreasing particle dipole moments, the data show a progressive distortion of the hexagonal symmetry, resulting from the formation of magnetic sheets. The SANS data show qualitative agreement with recent cryogenic transmission electron microscopy results obtained in 2D [Klokkenburg, Phys. Rev. Lett. 97, 185702 (2006)] on the same ferrofluids.

11.
Phys Rev Lett ; 98(15): 158301, 2007 Apr 13.
Article in English | MEDLINE | ID: mdl-17501389

ABSTRACT

We show that under appropriate conditions, mixtures of oil, water, and nanoparticles form thermodynamically stable oil-in-water emulsions with monodisperse droplet diameters in the range of 30-150 nm. This observation challenges current wisdom that so-called Pickering emulsions are at most metastable and points to a new class of mesoscopic equilibrium structures. Thermodynamic stability is demonstrated by the spontaneous evolution of binary droplet mixtures towards one intermediate size distribution. Equilibrium interfacial curvature due to an asymmetric charge distribution induced by adsorbed colloids explains the growth of emulsion droplets upon salt addition. Moreover, the existence of a minimal radius of curvature with a concomitant expulsion of excess oil is in close analogy with microemulsions.


Subject(s)
Emulsions/chemistry , Ferrosoferric Oxide/chemistry , Methacrylates/chemistry , Nanoparticles/chemistry , Oils/chemistry , Silanes/chemistry , Water/chemistry , Hydrophobic and Hydrophilic Interactions , Thermodynamics
12.
Langmuir ; 22(24): 10209-16, 2006 Nov 21.
Article in English | MEDLINE | ID: mdl-17107023

ABSTRACT

We report the preparation and properties of monodisperse magnetic poly(methyl methacrylate) latex spheres that exhibit field-induced colloidal crystallization to exotic morphologies controlled by the geometry of the gradient. The magnetic moment of the novel magnetic spheres is due to an inner core of magnetite particles. These particles, obtained from a conventional ferrofluid, first form a monodisperse emulsion with a silane coupling agent, after which they are directly incorporated in PMMA latex synthesized by standard emulsion polymerization. Scattering from the latex shell dominates over light absorption by the magnetic cores such that visible Bragg reflections of the magnetic crystals can be clearly observed. Concentrated nearly white latex fluids may exhibit near a magnet the warped equilibrium menisci known from the usually dark magnetite ferrofluids. Of the many possible applications, we briefly discuss the subsequent growth and melting of crystals by a slowly oscillating gradient, the formation of radial lattices, and the formation of ordered magnetic dots in PMMA latex films.

13.
J Chem Phys ; 125(19): 194709, 2006 Nov 21.
Article in English | MEDLINE | ID: mdl-17129152

ABSTRACT

We introduce a geometric analysis of random sphere packings based on the ensemble averaging of hard-sphere clusters generated via local rules including a nonoverlap constraint for hard spheres. Our cluster ensemble analysis matches well with computer simulations and experimental data on random hard-sphere packing with respect to volume fractions and radial distribution functions. To model loose as well as dense sphere packings various ensemble averages are investigated, obtained by varying the generation rules for clusters. Essential findings are a lower bound on volume fraction for random loose packing that is surprisingly close to the freezing volume fraction for hard spheres and, for random close packing, the observation of an unexpected split peak in the distribution of volume fractions for the local configurations. Our ensemble analysis highlights the importance of collective and global effects in random sphere packings by comparing clusters generated via local rules to random sphere packings and clusters that include collective effects.


Subject(s)
Chemistry , Models, Chemical , Particle Size , Algorithms , Chemical Phenomena , Cluster Analysis , Computer Simulation , Models, Biological , Porosity , Surface Properties
14.
Langmuir ; 22(4): 1822-7, 2006 Feb 14.
Article in English | MEDLINE | ID: mdl-16460113

ABSTRACT

We report on the preparation of monodisperse, fluorescent hematite-silica core-shell ellipsoids, with adjustable shapes ranging from spindles to nearly spheres, that are suitable for optical rotational diffusion studies. Hematite cores are grafted with poly(vinylpyrrolidone) which ensures colloidal stability during the silica coating provided by the base-catalyzed hydrolysis and polymerization of tetraethoxysilane. Using tetramethylammonium hydroxide as base instead of the volatile ammonia facilitates continuous seeded growth of silica to colloids with a desired aspect ratio. A convenient feature of the hematite-silica particles is the rapid dissolution of the iron oxide core by acid, producing hollow silica ellipsoids that can be optically matched to near transparency. The control of shape and size of the silica ellipsoids, their optical properties, and the fairly high yield in comparison to other preparation methods for nonspherical model colloids make the ellipsoids very suitable for quantitative studies. As a case in point, we have measured the rotational diffusion coefficient of fluorescent ellipsoids with rotational fluorescence recovery after photobleaching. Dye-labeled ellipsoids can be imaged with confocal microscopy.

15.
Langmuir ; 21(21): 9412-9, 2005 Oct 11.
Article in English | MEDLINE | ID: mdl-16207015

ABSTRACT

We demonstrate that magnetic particles of maghemite (gamma-Fe(2)O(3)) and cobalt ferrite (CoFe(2)O(4)) can be irreversibly attached to colloidal silica that is grafted with 3-mercaptopropyl(trimethoxy)silane (followed by the controlled growth of a silica layer) to obtain stable dispersions of monodisperse colloidal silica spheres that contain a dense shell of ferrite particles at an adjustable distance from the sphere surface. Magnetization of the ferrite shell induces a large dipole moment, and adjusting the thickness of the outer silica layer enables one to tune the contact attraction. This novel type of magnetizable silica colloid exhibits structure formation in a homogeneous field that varies from isotropic distributions to elongated dipolar chains.

16.
J Chem Phys ; 123(5): 054507, 2005 Aug 01.
Article in English | MEDLINE | ID: mdl-16108669

ABSTRACT

Local structural arrest in random packings of colloidal or granular spheres is quantified by a caging number, defined as the average minimum number of randomly placed spheres on a single sphere that immobilize all its translations. We present an analytic solution for the caging number for two-dimensional hard disks immobilized by neighbor disks which are placed at random positions under the constraint of a nonoverlap condition. Immobilization of a disk with radius r = 1 by arbitrary larger neighbor disks with radius r > or = 1 is solved analytically, whereas for contacting neighbors with radius 0 < r < 1, the caging number can be evaluated accurately with an approximate excluded volume model that also applies to spheres in higher Euclidean dimension. Comparison of our exact two-dimensional caging number with studies on random disk packing indicates that it relates to the average coordination number of random loose packing, whereas the parking number is more indicative for coordination in random dense packing of disks.

17.
J Colloid Interface Sci ; 287(2): 485-95, 2005 Jul 15.
Article in English | MEDLINE | ID: mdl-15925614

ABSTRACT

We systematically study the properties of dispersions of iron-based colloids synthesized in a broad size range by thermal decomposition of ironcarbonyl using different stabilizing surfactants. The synthesis results in stable dispersions of monodomain magnetic colloids. Our particles appear to consist of an amorphous Fe(0.75)C(0.25) alloy. Sizes of particles coated with modified polyisobutene or oleic acid can be easily controlled in the 2-10 nm range by varying the amounts of reactants. Extensive characterization with various techniques gives particle sizes that agree well with each other. In contrast to dispersions of small particles, which consist of single colloids, dynamic aggregates are present in dispersions of larger particles. On exposure to air, an oxide layer forms on the particle surface, consisting of a disordered Fe(III) oxide.

18.
J Colloid Interface Sci ; 290(2): 419-25, 2005 Oct 15.
Article in English | MEDLINE | ID: mdl-15949810

ABSTRACT

We report experiments on the stability of aqueous mixtures of charged colloidal magnetite and charged silica and silica covered with alumina particles of similar size. First, positively charged magnetite dispersions were mixed with negatively charged silica dispersions at pH 4, at different volume ratios and low colloid volume fractions, producing mixtures which were stable over a period of weeks despite the expected electrostatic attraction between the oppositely charged particles. When magnetite particles were mixed with positively charged silica covered with alumina at pH 4 under exactly the same conditions, some of the systems separated to form a magnetite sediment. When the volume fraction of the initial dispersions was increased, the behavior of the mixtures was the opposite: positive magnetite/negative silica mixtures were unstable at intermediate volume ratios. The unexpected behavior of the mixtures was investigated by means of electrophoretic mobility, initial susceptibility, and dynamic light scattering measurements as well as sedimentation experiments.


Subject(s)
Aluminum Oxide/chemistry , Ferrosoferric Oxide/chemistry , Magnetics , Silicon Dioxide/chemistry , Colloids/chemistry , Light , Particle Size , Scattering, Radiation , Surface Properties
19.
J Colloid Interface Sci ; 278(1): 115-25, 2004 Oct 01.
Article in English | MEDLINE | ID: mdl-15313644

ABSTRACT

We report a study of mixtures of initially oppositely charged particles with similar size. Dispersions of silica spheres (negatively charged) and alumina-coated silica spheres (positively charged) at low ionic strength, mixed at various volume ratios, exhibited a surprising stability up to compositions of 50% negative colloids as well as spontaneous repeptization of particles from the early-stage formed aggregates. The other mixtures were found to contain large heteroaggregates, which were imaged using cryogenic electron microscopy. Electrophoretic mobility, electrical conductivity, static and dynamic light scattering and sedimentation were studied as a function of volume fraction of the mixed dispersions to investigate particle interactions and elucidate the repeptization phenomenon.

20.
J Chem Phys ; 120(9): 4517-29, 2004 Mar 01.
Article in English | MEDLINE | ID: mdl-15268620

ABSTRACT

We report a polarized fluorescence recovery after photobleaching (pFRAP) method to measure the rotational dynamics of fluorescent colloids over a wide dynamic range. The method is based on the polarization anisotropy in the fluorescence intensity, generated by bleaching of fluorescently labeled particles with an intense pulse of linearly polarized laser light. The rotational mobilities of the fluorescent particles can be extracted from the relaxation kinetics of the postbleach fluorescence polarization anisotropy. Our pFRAP setup has access to correlation times over a range of time scales from tens of microseconds to tens of seconds, and is highly sensitive, so very low concentrations of labeled particles can be probed. We present a detailed description of the theoretical background of pFRAP. The performance of the equipment is demonstrated for fluorescent colloidal silica spheres, dispersed in pure solvents as well as in fd-virus suspensions.


Subject(s)
Colloids/analysis , Colloids/chemistry , Fluorescence Recovery After Photobleaching/methods , Models, Chemical , Models, Molecular , Biomechanical Phenomena , Computer Simulation , Diffusion , Microspheres , Molecular Conformation , Rotation , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL