Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
mBio ; 15(5): e0063324, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38587428

ABSTRACT

Systemic infections by Candida spp. are associated with high mortality rates, partly due to limitations in current antifungals, highlighting the need for novel drugs and drug targets. The fungal phosphatidylserine synthase, Cho1, from Candida albicans is a logical antifungal drug target due to its importance in virulence, absence in the host, and conservation among fungal pathogens. Inhibitors of Cho1 could serve as lead compounds for drug development, so we developed a target-based screen for inhibitors of purified Cho1. This enzyme condenses serine and cytidyldiphosphate-diacylglycerol (CDP-DAG) into phosphatidylserine (PS) and releases cytidylmonophosphate (CMP). Accordingly, we developed an in vitro nucleotidase-coupled malachite-green-based high throughput assay for purified C. albicans Cho1 that monitors CMP production as a proxy for PS synthesis. Over 7,300 molecules curated from repurposing chemical libraries were interrogated in primary and dose-responsivity assays using this platform. The screen had a promising average Z' score of ~0.8, and seven compounds were identified that inhibit Cho1. Three of these, ebselen, LOC14, and CBR-5884, exhibited antifungal effects against C. albicans cells, with fungicidal inhibition by ebselen and fungistatic inhibition by LOC14 and CBR-5884. Only CBR-5884 showed evidence of disrupting in vivo Cho1 function by inducing phenotypes consistent with the cho1∆∆ mutant, including a reduction of cellular PS levels. Kinetics curves and computational docking indicate that CBR-5884 competes with serine for binding to Cho1 with a Ki of 1,550 ± 245.6 nM. Thus, this compound has the potential for development into an antifungal compound. IMPORTANCE: Fungal phosphatidylserine synthase (Cho1) is a logical antifungal target due to its crucial role in the virulence and viability of various fungal pathogens, and since it is absent in humans, drugs targeted at Cho1 are less likely to cause toxicity in patients. Using fungal Cho1 as a model, there have been two unsuccessful attempts to discover inhibitors for Cho1 homologs in whole-cell screens prior to this study. The compounds identified in these attempts do not act directly on the protein, resulting in the absence of known Cho1 inhibitors. The significance of our research is that we developed a high-throughput target-based assay and identified the first Cho1 inhibitor, CBR-5884, which acts both on the purified protein and its function in the cell. This molecule acts as a competitive inhibitor with a Ki value of 1,550 ± 245.6 nM and, thus, has the potential for development into a new class of antifungals targeting PS synthase.


Subject(s)
Antifungal Agents , CDPdiacylglycerol-Serine O-Phosphatidyltransferase , Candida albicans , Enzyme Inhibitors , Candida albicans/drug effects , Candida albicans/enzymology , Candida albicans/genetics , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , CDPdiacylglycerol-Serine O-Phosphatidyltransferase/genetics , CDPdiacylglycerol-Serine O-Phosphatidyltransferase/metabolism , CDPdiacylglycerol-Serine O-Phosphatidyltransferase/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , High-Throughput Screening Assays , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Microbial Sensitivity Tests , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/antagonists & inhibitors , Fungal Proteins/chemistry , Phosphatidylserines/metabolism , Furans , Thiophenes
2.
Microbiol Resour Announc ; 12(11): e0066723, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37812006

ABSTRACT

Here we present the genomes of four marine agarolytic bacteria belonging to the Bacteroidota and Proteobacteria. Two genomes are closed and two are in draft form, but all are at least 99% complete and offer new opportunities to study agar-degradation in marine bacteria.

3.
Microbiol Spectr ; : e0370022, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36975796

ABSTRACT

Performing genetic manipulations in Bacillus strains is often hindered by difficulty in identifying conditions appropriate for DNA uptake. This shortcoming limits our understanding of the functional diversity within this genus and the practical application of new strains. We have developed a simple method for increasing the genetic tractability of Bacillus spp. through conjugation-mediated plasmid transfer via a diaminopimelic acid (DAP) auxotrophic Escherichia coli donor strain. We observe transfer into representatives of the Bacillus clades subtilis, cereus, galactosidilyticus, and Priestia megaterium and successfully applied this protocol to 9 out of 12 strains attempted. We utilized the BioBrick 2.0 plasmids pECE743 and pECE750, as well as the CRISPR plasmid pJOE9734.1, to generate a xylose-inducible green-fluorescent protein (GFP)-expressing conjugal vector, pEP011. The use of xylose-inducible GFP ensures ease of confirming transconjugants, which enables users to quickly rule out false positives. Additionally, our plasmid backbone offers the flexibility to be used in other contexts, including transcriptional fusions and overexpression, with only a few modifications. IMPORTANCE Bacillus species are widely used to produce proteins and to understand microbial differentiation. Unfortunately, outside a few lab strains, genetic manipulation is difficult and can prevent thorough dissection of useful phenotypes. We developed a protocol that utilizes conjugation (plasmids that initiate their own transfer) to introduce plasmids into a diverse range of Bacillus spp. This will facilitate a deeper study of wild isolates for both industrial and pure research uses.

4.
Infect Immun ; 90(12): e0034222, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36374100

ABSTRACT

Shielding the immunogenic cell wall epitope ß(1, 3)-glucan under an outer layer of mannosylated glycoproteins is an essential virulence factor deployed by Candida albicans during systemic infection. Accordingly, mutants with increased ß(1, 3)-glucan exposure (unmasking) display increased immunostimulatory capabilities in vitro and attenuated virulence during systemic infection in mice. However, little work has been done to assess the impact of increased unmasking during the two most common manifestations of candidiasis, namely, oropharyngeal candidiasis (OPC) and vulvovaginal candidiasis (VVC). We have shown previously that the expression of a single hyperactive allele of the MAP3K STE11ΔN467 induces unmasking via the Cek1 MAPK pathway, attenuates fungal burden, and prolongs survival during systemic infection in mice. Here, we expand on these findings and show that infection with an unmasked STE11ΔN467 mutant also impacts disease progression during OPC and VVC murine infection models. Male mice sublingually infected with the STE11ΔN467 mutant showed a significant reduction in tongue fungal burden at 2 days postinfection and a modest reduction at 5 days postinfection. However, we find that selection for STE11ΔN467 suppressor mutants that no longer display increased unmasking occurs within the oral cavity and is likely responsible for the restoration of fungal burden trends to wild-type levels later in the infection. In the VVC infection model, no attenuation in fungal burden was observed. However, polymorphonuclear cell recruitment and interleukin-1ß (IL-1ß) levels within the vaginal lumen, markers of immunopathogenesis, were increased in mice infected with unmasked STE11ΔN467 cells. Thus, our data suggest a niche-specific impact for unmasking on disease progression.


Subject(s)
Candidiasis, Oral , Candidiasis, Vulvovaginal , Candidiasis , Animals , Female , Male , Mice , Candida albicans , Candidiasis/microbiology , Candidiasis, Vulvovaginal/microbiology , Disease Progression , Glucans
5.
PLoS Pathog ; 17(8): e1009839, 2021 08.
Article in English | MEDLINE | ID: mdl-34432857

ABSTRACT

Masking the immunogenic cell wall epitope ß(1,3)-glucan under an outer layer of mannosylated glycoproteins is an important virulence factor deployed by Candida albicans during infection. Consequently, increased ß(1,3)-glucan exposure (unmasking) reveals C. albicans to the host's immune system and attenuates its virulence. We have previously shown that activation of the Cek1 MAPK pathway via expression of a hyperactive allele of an upstream kinase (STE11ΔN467) induced unmasking. It also increased survival of mice in a murine disseminated candidiasis model and attenuated kidney fungal burden by ≥33 fold. In this communication, we utilized cyclophosphamide-induced immunosuppression to test if the clearance of the unmasked STE11ΔN467 mutant was dependent on the host immune system. Suppression of the immune response by cyclophosphamide reduced the attenuation in fungal burden caused by the STE11ΔN467 allele. Moreover, specific depletion of neutrophils via 1A8 antibody treatment also reduced STE11ΔN467-dependent fungal burden attenuation, but to a lesser extent than cyclophosphamide, demonstrating an important role for neutrophils in mediating fungal clearance of unmasked STE11ΔN467 cells. In an effort to understand the mechanism by which Ste11ΔN467 causes unmasking, transcriptomics were used to reveal that several components in the Cek1 MAPK pathway were upregulated, including the transcription factor CPH1 and the cell wall sensor DFI1. In this report we show that a cph1ΔΔ mutation restored ß(1,3)-glucan exposure to wild-type levels in the STE11ΔN467 strain, confirming that Cph1 is the transcription factor mediating Ste11ΔN467-induced unmasking. Furthermore, Cph1 is shown to induce a positive feedback loop that increases Cek1 activation. In addition, full unmasking by STE11ΔN467 is dependent on the upstream cell wall sensor DFI1. However, while deletion of DFI1 significantly reduced Ste11ΔN467-induced unmasking, it did not impact activation of the downstream kinase Cek1. Thus, it appears that once stimulated by Ste11ΔN467, Dfi1 activates a parallel signaling pathway that is involved in Ste11ΔN467-induced unmasking.


Subject(s)
Candida albicans/immunology , Candidiasis/prevention & control , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Neutrophils/immunology , Transcription Factors/metabolism , Virulence , beta-Glucans/immunology , Animals , Candidiasis/immunology , Candidiasis/microbiology , Cell Wall , Fungal Proteins/genetics , Mice , Mice, Inbred ICR , Neutrophils/microbiology , Transcription Factors/genetics
6.
Front Microbiol ; 10: 2548, 2019.
Article in English | MEDLINE | ID: mdl-31824441

ABSTRACT

Poly-lactic acid (PLA) is increasingly used as a biodegradable alternative to traditional petroleum-based plastics. In this study, we identify a novel agricultural soil isolate of Bacillus pumilus (B12) that is capable of degrading high molecular weight PLA films. This degradation can be detected on a short timescale, with significant degradation detected within 48-h by the release of L-lactate monomers, allowing for a rapid identification ideal for experimental variation. The validity of using L-lactate as a proxy for degradation of PLA films is corroborated by loss of rigidity and appearance of fractures in PLA films, as measured by atomic force microscopy and scanning electron microscopy (SEM), respectively. Furthermore, we have observed a dose-dependent decrease in PLA degradation in response to an amino acid/nucleotide supplement mix that is driven mainly by the nucleotide base adenine. In addition, amendments of the media with specific carbon sources increase the rate of PLA degradation, while phosphate and potassium additions decrease the rate of PLA degradation by B. pumilus B12. These results suggest B. pumilus B12 is adapting its enzymatic expression based on environmental conditions and that these conditions can be used to study the regulation of this process. Together, this work lays a foundation for studying the bacterial degradation of biodegradable plastics.

SELECTION OF CITATIONS
SEARCH DETAIL
...