Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
Molecules ; 29(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38611800

ABSTRACT

4-Chloroisocoumarin compounds have broad inhibitory properties against serine proteases. Here, we show that selected 3-alkoxy-4-chloroisocoumarins preferentially inhibit the activity of the conserved serine protease High-temperature requirement A of Chlamydia trachomatis. The synthesis of a new series of isocoumarin-based scaffolds has been developed, and their anti-chlamydial properties were investigated. The structure of the alkoxy substituent was found to influence the potency of the compounds against High-temperature requirement A, and modifications to the C-7 position of the 3-alkoxy-4-chloroisocoumarin structure attenuate anti-chlamydial properties.


Subject(s)
Alcohols , Chlamydia trachomatis , Protease Inhibitors , Protease Inhibitors/pharmacology , Enzyme Therapy , Isocoumarins , Serine Endopeptidases , Serine Proteases
2.
J Bacteriol ; 206(4): e0037123, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38445896

ABSTRACT

Chlamydia trachomatis is an intracellular bacterial pathogen that undergoes a biphasic developmental cycle, consisting of intracellular reticulate bodies and extracellular infectious elementary bodies. A conserved bacterial protease, HtrA, was shown previously to be essential for Chlamydia during the reticulate body phase, using a novel inhibitor (JO146). In this study, isolates selected for the survival of JO146 treatment were found to have polymorphisms in the acyl-acyl carrier protein synthetase gene (aasC). AasC encodes the enzyme responsible for activating fatty acids from the host cell or synthesis to be incorporated into lipid bilayers. The isolates had distinct lipidomes with varied fatty acid compositions. A reduction in the lipid compositions that HtrA prefers to bind to was detected, yet HtrA and MOMP (a key outer membrane protein) were present at higher levels in the variants. Reduced progeny production and an earlier cellular exit were observed. Transcriptome analysis identified that multiple genes were downregulated in the variants especially stress and DNA processing factors. Here, we have shown that the fatty acid composition of chlamydial lipids, HtrA, and membrane proteins interplay and, when disrupted, impact chlamydial stress response that could trigger early cellular exit. IMPORTANCE: Chlamydia trachomatis is an important obligate intracellular pathogen that has a unique biphasic developmental cycle. HtrA is an essential stress or virulence protease in many bacteria, with many different functions. Previously, we demonstrated that HtrA is critical for Chlamydia using a novel inhibitor. In the present study, we characterized genetic variants of Chlamydia trachomatis with reduced susceptibility to the HtrA inhibitor. The variants were changed in membrane fatty acid composition, outer membrane proteins, and transcription of stress genes. Earlier and more synchronous cellular exit was observed. Combined, this links stress response to fatty acids, membrane proteins, and HtrA interplay with the outcome of disrupted timing of chlamydial cellular exit.


Subject(s)
Chlamydia trachomatis , Fatty Acids , Chlamydia trachomatis/genetics , Fatty Acids/metabolism , Membrane Proteins/metabolism , Cell Line , Peptide Hydrolases/metabolism , Bacterial Proteins/genetics
3.
Ecol Evol ; 14(2): e10895, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38333093

ABSTRACT

Habitat fragmentation can increase the chance of population bottlenecks and inbreeding, and may ultimately lead to reduced fitness and local extinction. Notelaea lloydii is a native olive species endemic to Australia and listed as vulnerable due to its restricted distribution. A recent molecular systematics study has revealed there might be some geographic structuring among N. lloydii populations. Therefore, we undertook a genome-wide single nucleotide polymorphism (SNP) analysis to determine levels and patterns of genetic diversity, inbreeding and gene flow within and among N. lloydii populations in south-eastern Queensland. Furthermore, as the reproductive phase of a plant's life history has a profound influence on genetic diversity, life history reproductive traits were also studied. Our SNP analysis revealed low genetic diversity, inbreeding and significant genetic structuring even among proximate populations. Results of a flower and fruit bagging experiment in two consecutive seasons revealed that N. lloydii produced many flowers but only a few fruits survived to maturity. There were no differences in bagged and un-bagged flowering and fruiting rates, and therefore, we conclude that the high fruit abortion rate was probably due to inbreeding depression and/or suboptimal conditions, rather than pollinator availability and insect attack. Overall, results of this study indicate that the populations of N. lloydii are small, inbred and genetically isolated and represent unique management units that require local conservation management due to ongoing threats associated with urbanisation.

4.
Ecol Evol ; 13(12): e10783, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38053788

ABSTRACT

Medium to large rainforest mammals are key conservation flagship groups that offer non-redundant ecosystem functions, but anthropic pressures, such as illegal hunting, may strongly affect their occupancy in Amazonia. We combined camera traps and occupancy models to assess the influence of distance from human settlements, the number of families per settlement and the synergetic effect of the average weight of 27 species on the occupancy probability of mammals. Specifically, we classified mammal species according to the game preferences of hunters (i.e. a group of species depleted for bushmeat, a group of species hunted for retaliation and a group of non-hunted species). We also accounted for the influence on the detection probability of each group of both the number of days each camera operated and the body weight of mammals. The occupancy probability of the bushmeat group (i.e. deer, peccaries, agoutis, pacas and armadillos) was lower at locations closer to human settlements. Still, the number of families correlated positively with occupancy, with the occupancy probability of the group being slightly higher at sites with more families. This difference was probably due to larger and more abundant crops and fruiting trees attracting wildlife at such sites. Conversely, the occupancy probability of the retaliation group (i.e. carnivores) and the non-hunted group (i.e. opossums, spiny rats, squirrels and anteaters) were indifferent to anthropogenic stressors. The detection probability of the non-hunted and particularly the most depleted species correlated negatively with body weight. This may suggest that larger species, especially those from the bushmeat group, are rarer or less abundant in the system, possibly because they are the preferable target of hunters. In the long term, locals will likely need to travel long distances to find harvest meat. Poaching also threatens food security since game bushmeat is an essential source of protein for isolated rural Amazonians.

5.
BMC Biol ; 21(1): 121, 2023 05 24.
Article in English | MEDLINE | ID: mdl-37226201

ABSTRACT

BACKGROUND: The ShK toxin from Stichodactyla helianthus has established the therapeutic potential of sea anemone venom peptides, but many lineage-specific toxin families in Actiniarians remain uncharacterised. One such peptide family, sea anemone 8 (SA8), is present in all five sea anemone superfamilies. We explored the genomic arrangement and evolution of the SA8 gene family in Actinia tenebrosa and Telmatactis stephensoni, characterised the expression patterns of SA8 sequences, and examined the structure and function of SA8 from the venom of T. stephensoni. RESULTS: We identified ten SA8-family genes in two clusters and six SA8-family genes in five clusters for T. stephensoni and A. tenebrosa, respectively. Nine SA8 T. stephensoni genes were found in a single cluster, and an SA8 peptide encoded by an inverted SA8 gene from this cluster was recruited to venom. We show that SA8 genes in both species are expressed in a tissue-specific manner and the inverted SA8 gene has a unique tissue distribution. While the functional activity of the SA8 putative toxin encoded by the inverted gene was inconclusive, its tissue localisation is similar to toxins used for predator deterrence. We demonstrate that, although mature SA8 putative toxins have similar cysteine spacing to ShK, SA8 peptides are distinct from ShK peptides based on structure and disulfide connectivity. CONCLUSIONS: Our results provide the first demonstration that SA8 is a unique gene family in Actiniarians, evolving through a variety of structural changes including tandem and proximal gene duplication and an inversion event that together allowed SA8 to be recruited into the venom of T. stephensoni.


Subject(s)
Sea Anemones , Animals , Sea Anemones/genetics , Genomics , Chromosome Inversion , Cysteine , Disulfides
6.
Philos Trans R Soc Lond B Biol Sci ; 378(1880): 20220085, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37183893

ABSTRACT

Incorporating morphological data into modern phylogenies allows integration of fossil evidence, facilitating divergence dating and macroevolutionary inferences. Improvements in the phylogenetic utility of morphological data have been sought via Procrustes-based geometric morphometrics (GMM), but with mixed success and little clarity over what anatomical areas are most suitable. Here, we assess GMM-based phylogenetic reconstructions in a heavily sampled source of discrete characters for mammalian phylogenetics-the basicranium-in 57 species of marsupial mammals, compared with the remainder of the cranium. We show less phylogenetic signal in the basicranium compared with a 'Rest of Cranium' partition, using diverse metrics of phylogenetic signal (Kmult, phylogenetically aligned principal components analysis, comparisons of UPGMA/neighbour-joining/parsimony trees and cophenetic distances to a reference phylogeny) for scaled, Procrustes-aligned landmarks and allometry-corrected residuals. Surprisingly, a similar pattern emerged from parsimony-based analyses of discrete cranial characters. The consistent results across methods suggest that easily computed metrics such as Kmult can provide good guidance on phylogenetic information in a landmarking configuration. In addition, GMM data may be less informative for intricate but conservative anatomical regions such as the basicranium, while better-but not necessarily novel-phylogenetic information can be expected for broadly characterized shapes such as entire bones. This article is part of the theme issue 'The mammalian skull: development, structure and function'.


Subject(s)
Marsupialia , Animals , Phylogeny , Skull , Skull Base/anatomy & histology , Biological Evolution
7.
Nat Commun ; 14(1): 914, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36854679

ABSTRACT

The systematics of Madagascar's extinct elephant birds remains controversial due to large gaps in the fossil record and poor biomolecular preservation of skeletal specimens. Here, a molecular analysis of 1000-year-old fossil eggshells provides the first description of elephant bird phylogeography and offers insight into the ecology and evolution of these flightless giants. Mitochondrial genomes from across Madagascar reveal genetic variation that is correlated with eggshell morphology, stable isotope composition, and geographic distribution. The elephant bird crown is dated to ca. 30 Mya, when Madagascar is estimated to have become less arid as it moved northward. High levels of between-clade genetic variation support reclassifying Mullerornis into a separate family. Low levels of within-clade genetic variation suggest there were only two elephant bird genera existing in southern Madagascar during the Holocene. However, we find an eggshell collection from Madagascar's far north that represents a unique lineage of Aepyornis. Furthermore, divergence within Aepyornis coincides with the aridification of Madagascar during the early Pleistocene ca. 1.5 Ma, and is consistent with the fragmentation of populations in the highlands driving diversification and the evolution of extreme gigantism over shorts timescales. We advocate for a revision of their taxonomy that integrates palaeogenomic and palaeoecological perspectives.


Subject(s)
Birds , Egg Shell , Fossils , Animals , Birds/classification , Extinction, Biological
8.
Orthopedics ; 46(1): e58-e61, 2023.
Article in English | MEDLINE | ID: mdl-36476287

ABSTRACT

Vascular injury following total knee arthroplasty (TKA) is a rare complication. The authors present a case of superficial femoral artery aneurysm in a 60-year-old man following elective TKA in the setting of intra-articular On-Q* (Avanos Medical) pain catheter placement into the adductor canal for postoperative pain control. This is the second reported case of pseudoaneurysm secondary to adductor canal block. The patient presented on postoperative day 8 with thigh swelling, ecchymosis, and pain. The pseudoaneurysm was subsequently diagnosed and successfully stented after selective catheterization. The patient was discharged the next day. This case highlights the importance for a high index of suspicion in patients presenting with acute swelling in the postoperative period. If identified in a timely fashion, treatment with stenting or selective catheter embolization can successfully treat this issue and help avoid further complications. [Orthopedics. 2023;46(1):e58-e61.].


Subject(s)
Aneurysm, False , Arthroplasty, Replacement, Knee , Nerve Block , Male , Humans , Middle Aged , Thigh/surgery , Arthroplasty, Replacement, Knee/adverse effects , Aneurysm, False/diagnostic imaging , Aneurysm, False/etiology , Aneurysm, False/surgery , Femoral Artery/diagnostic imaging , Femoral Artery/surgery , Pain, Postoperative/therapy , Catheters , Anesthetics, Local , Analgesics, Opioid , Femoral Nerve
9.
Viruses ; 14(4)2022 03 28.
Article in English | MEDLINE | ID: mdl-35458433

ABSTRACT

Dengue is an arboviral disease caused by dengue virus (DENV), leading to approximately 25,000 deaths/year and with over 40% of the world's population at risk. Increased international travel and trade, poorly regulated urban expansion, and warming global temperatures have expanded the geographic range and incidence of the virus in recent decades. This study used phylogenetic and selection pressure analyses to investigate trends in DENV evolution, using whole genome coding sequences from publicly available databases alongside newly sequenced isolates collected between 1963-1997 from Southeast Asia and the Pacific. Results revealed very similar phylogenetic relationships when using the envelope gene and the whole genome coding sequences. Although DENV evolution is predominantly driven by negative selection, a number of amino acid sites undergoing positive selection were found across the genome, with the majority located in the envelope and NS5 genes. Some genotypes appear to be diversifying faster than others within each serotype. The results from this research improve our understanding of DENV evolution, with implications for disease control efforts such as Wolbachia-based biocontrol and vaccine design.


Subject(s)
Dengue Virus , Dengue , Wolbachia , Evolution, Molecular , Genome, Viral , Genotype , Humans , Phylogeny
10.
Eur J Med Chem ; 230: 114064, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35007862

ABSTRACT

High temperature requirement A (HtrA) serine proteases have emerged as a novel class of antibacterial target, which are crucial in protein quality control and are involved in the pathogenesis of a wide array of bacterial infections. Previously, we demonstrated that HtrA in Chlamydia is essential for bacterial survival, replication and virulence. Here, we report a new series of proline (P2)-modified inhibitors of Chlamydia trachomatis HtrA (CtHtrA) developed by proline ring expansion and Cγ-substitutions. The structure-based drug optimization process was guided by molecular modelling and in vitro pharmacological evaluation of inhibitory potency, selectivity and cytotoxicity. Compound 25 from the first-generation 4-substituted proline analogues increased antiCtHtrA potency and selectivity over human neutrophil elastase (HNE) by approximately 6- and 12-fold, respectively, relative to the peptidic lead compound 1. Based on this compound, second-generation substituted proline residues containing 1,2,3-triazole moieties were synthesized by regioselective azide-alkyne click chemistry. Compound 49 demonstrated significantly improved antichlamydial activity in whole cell assays, diminishing the bacterial infectious progeny below the detection limit at the lowest dose tested. Compound 49 resulted in approximately 9- and 22-fold improvement in the inhibitory potency and selectivity relative to 1, respectively. To date, compound 49 is the most potent HtrA inhibitor developed against Chlamydia spp.


Subject(s)
Proline , Serine Proteases , Anti-Bacterial Agents/pharmacology , Chlamydia trachomatis , Humans , Peptides , Proline/pharmacology
11.
Mol Phylogenet Evol ; 166: 107328, 2022 01.
Article in English | MEDLINE | ID: mdl-34666168

ABSTRACT

Erroneous taxonomic attributions in GenBank accessions can mislead phylogenetic inference and appear to be widespread within genera. We investigate the influence of taxonomic misattributions for reconstructing the phylogeny of three-striped dasyures, which include four recognized Myoictis species (Marsupialia: Dasyuridae) that are distributed across New Guinea and nearby islands. Molecular phylogenetic studies that have focused on dasyurids consistently resolve the interrelationships of these small carnivores, grouping M. leucura with M. wavicus, and placing M. wallacei and M. melas as successively deeper divergences from these. Two recent marsupial and mammalian supermatrix phylogenies instead favour an alternative Myoictis topology that is discordant with each of these relationships. We add new nuclear and mitochondrial sequences and employ randomized accession resampling that shows the supermatrix topologies are an artefact of several outdated taxonomic attributions in GenBank. Updating these accessions brings agreement across Myoictis phylogenies with randomly resampled accessions. We encourage authors to update GenBank taxonomic attributions and we argue that an option is needed for flagging accessions that are not demonstrably incorrect, but that provide anomalous results. This would serve both as a caution for future supermatrix construction and to highlight accessions of potentially significant biological interest for further study.


Subject(s)
Marsupialia , Animals , Cell Nucleus/genetics , Databases, Nucleic Acid , New Guinea , Phylogeny
12.
Eur J Med Chem ; 224: 113692, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34265463

ABSTRACT

The obligate intracellular bacterium Chlamydia trachomatis (C. trachomatis) is responsible for the most common bacterial sexually transmitted infection and is the leading cause of preventable blindness, representing a major global health burden. While C. trachomatis infection is currently treatable with broad-spectrum antibiotics, there would be many benefits of a chlamydia-specific therapy. Previously, we have identified a small-molecule lead compound JO146 [Boc-Val-Pro-ValP(OPh)2] targeting the bacterial serine protease HtrA, which is essential in bacterial replication, virulence and survival, particularly under stress conditions. JO146 is highly efficacious in attenuating infectivity of both human (C. trachomatis) as well as koala (C. pecorum) species in vitro and in vivo, without host cell toxicity. Herein, we present our continuing efforts on optimizing JO146 by modifying the N-capping group as well as replacing the parent peptide structure with the 2-pyridone scaffold at P3/P2. The drug optimization process was guided by molecular modelling, enzyme and cell-based assays. Compound 18b from the pyridone series showed improved inhibitory activity against CtHtrA by 5-fold and selectivity over human neutrophil elastase (HNE) by 109-fold compared to JO146, indicating that 2-pyridone is a suitable bioisostere of the P3/P2 amide/proline for developing CtHtrA inhibitors. Most pyridone-based inhibitors showed superior anti-chlamydial potency to JO146 especially at lower doses (25 and 50 µM) in C. trachomatis and C. pecorum cell culture assays. Modifications of the N-capping group of the peptidyl inhibitors did not have much influence on the anti-chlamydial activities, providing opportunities for more versatile alterations and future optimization. In summary, we present 2-pyridone based analogues as a new generation of non-peptidic CtHtrA inhibitors, which hold better promise as anti-chlamydial drug candidates.


Subject(s)
Anti-Bacterial Agents/pharmacology , Chlamydophila/enzymology , Peptides/pharmacology , Pyridones/pharmacology , Serine Proteases/metabolism , Serine Proteinase Inhibitors/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Dose-Response Relationship, Drug , Drug Design , Escherichia coli/drug effects , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Structure , Peptides/chemical synthesis , Peptides/chemistry , Pseudomonas aeruginosa/drug effects , Pyridones/chemistry , Serine Proteinase Inhibitors/chemical synthesis , Serine Proteinase Inhibitors/chemistry , Staphylococcus aureus/drug effects , Structure-Activity Relationship
13.
Arthrosc Sports Med Rehabil ; 3(3): e861-e866, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34195655

ABSTRACT

PURPOSE: To compare the rate of previous knee arthroscopy in patients undergoing total knee arthroplasty (TKA) before (2005-2006) and after (2018) publication of landmark studies that examined the effectiveness of knee arthroscopy as well as the American Academy of Orthopaedic Surgeons 2013 knee arthroscopy guidelines. METHODS: We performed a retrospective chart review of 214 patients who underwent a TKA between 2005 and 2006 (Group 1) and 213 patients who underwent a TKA in 2018 (Group 2). We reviewed medical records to determine whether previous knee arthroscopy was performed. Group comparisons were made using the t test for continuous data and the χ2 test for categorical data, and means ± standard deviation are presented. RESULTS: Patients in Group 2 were older than those in Group 1 (67.0 ± 8.3 vs 64.3 ± 11.5 years, P = .01); however, there were no differences between groups with respect to sex (P = .40), body mass index (P = .36), and laterality of TKA (P = .05). There was no difference in the history of previous knee arthroscopy between Groups 1 and 2 overall (27% vs 32%, P = .27) and within 10 years of TKA (17% vs 15%, P = .44). CONCLUSIONS: We did not find a difference in the number of previous knee arthroscopies for patients undergoing TKA in 2018 versus 2005-2006. This suggests that the recommendations set forth by landmark clinical trials that examined the effectiveness of knee arthroscopy and the AAOS 2013 knee arthroscopy guidelines did not have a sudden impact within our geographic region, but there is some evidence to suggest a gradual shift in treatment, where knee arthroscopy is withheld near imminent knee arthroplasty. LEVEL OF EVIDENCE: III, retrospective comparative study.

14.
Mol Phylogenet Evol ; 158: 107082, 2021 05.
Article in English | MEDLINE | ID: mdl-33482383

ABSTRACT

Mitochondrial genomes provided the first widely used sequences that were sufficiently informative to resolve relationships among animals across a wide taxonomic domain, from within species to between phyla. However, mitogenome studies supported several anomalous relationships and fell partly out of favour as sequencing multiple, independent nuclear loci proved to be highly effective. A tendency to blame mitochondrial DNA (mtDNA) has overshadowed efforts to understand and ameliorate underlying model misspecification. Here we find that influential assessments of the infidelity of mitogenome phylogenies have often been overstated, but nevertheless, substitution saturation and compositional non-stationarity substantially mislead reconstruction. We show that RY coding the mtDNA, excluding protein-coding 3rd codon sites, partitioning models based on amino acid hydrophobicity and enhanced taxon sampling improve the accuracy of mitogenomic phylogeny reconstruction for placental mammals, almost to the level of multi-gene nuclear datasets. Indeed, combined analysis of mtDNA with 3-fold longer nuclear sequence data either maintained or improved upon the nuclear support for all generally accepted clades, even those that mtDNA alone did not favour, thus indicating "hidden support". Confident mtDNA phylogeny reconstruction is especially important for understanding the evolutionary dynamics of mitochondria themselves, and for merging extinct taxa into the tree of life, with ancient DNA often only accessible as mtDNA. Our ancient mtDNA analyses lend confidence to the relationships of three extinct megafaunal taxa: glyptodonts are nested within armadillos, the South American ungulate, Macrauchenia is sister to horses and rhinoceroses, and sabre-toothed and scimitar cats are the monophyletic sister-group of modern cats.


Subject(s)
Mammals/genetics , Mitochondria/genetics , Animals , Biological Evolution , DNA, Mitochondrial/classification , DNA, Mitochondrial/genetics , Eutheria/genetics , Female , Genetic Heterogeneity , Likelihood Functions , Mammals/classification , Phylogeny , Pregnancy
15.
Am Nat ; 196(6): 755-768, 2020 12.
Article in English | MEDLINE | ID: mdl-33211559

ABSTRACT

AbstractAmong vertebrates, placental mammals are particularly variable in the covariance between cranial shape and body size (allometry), with rodents being a major exception. Australian murid rodents allow an assessment of the cause of this anomaly because they radiated on an ecologically diverse continent notably lacking other terrestrial placentals. Here, we use 3D geometric morphometrics to quantify species-level and evolutionary allometries in 38 species (317 crania) from all Australian murid genera. We ask whether ecological opportunity resulted in greater allometric diversity compared with other rodents or whether conserved allometry suggests intrinsic constraints and/or stabilizing selection. We also assess whether cranial shape variation follows the proposed rule of craniofacial evolutionary allometry (CREA), whereby larger species have relatively longer snouts and smaller braincases. To ensure we could differentiate parallel versus nonparallel species-level allometric slopes, we compared the slopes of rarefied samples across all clades. We found exceedingly conserved allometry and CREA-like patterns across the 10-million-year split between Mus and Australian murids. This could support both intrinsic-constraint and stabilizing-selection hypotheses for conserved allometry. Large-bodied frugivores evolved faster than other species along the allometric trajectory, which could suggest stabilizing selection on the shape of the masticatory apparatus as body size changes.


Subject(s)
Body Size , Muridae/anatomy & histology , Muridae/classification , Skull/anatomy & histology , Animals , Australia , Biological Evolution , Female , Male , Muridae/genetics , Phylogeny
16.
Ecol Evol ; 10(18): 9707-9720, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33005341

ABSTRACT

The biogeographic distribution of diversity among populations of threatened mammalian species is generally investigated using population genetics. However, intraspecific phenotypic diversity is rarely assessed beyond taxonomy-focused linear measurements or qualitative descriptions. Here, we use a technique widely used in the evolutionary sciences-geometric morphometrics-to characterize shape diversity in the skull of an endangered marsupial, the northern quoll, across its 5,000 km distribution range along Northern Australia. Skull shape is a proxy for feeding, behavior, and phenotypic differentiation, allowing us to ask whether populations can be distinguished and whether patterns of variation indicate adaptability to changing environmental conditions. We analyzed skull shape in 101 individuals across four mainland populations and several islands. We assessed the contribution of population, size, sex, rainfall, temperature, and geography to skull shape variation using principal component analysis, Procrustes ANOVA, and variation partitioning analyses. The populations harbor similar amounts of broadly overlapping skull shape variation, with relatively low geographic effects. Size predicted skull shape best, coinciding with braincase size variation and differences in zygomatic arches. Size-adjusted differences in populations explained less variation with far smaller effect sizes, relating to changes in the insertion areas of masticatory muscles, as well as the upper muzzle and incisor region. Climatic and geographic variables contributed little. Strikingly, the vast majority of shape variation-76%-remained unexplained. Our results suggest a uniform intraspecific scope for shape variation, possibly due to allometric constraints or phenotypic plasticity beyond the relatively strong allometric effect. The lack of local adaptation indicates that cross-breeding between populations will not reduce local morphological skull (and probably general musculoskeletal) adaptation because none exists. However, the potential for heritable morphological variation (e.g., specialization to local diets) seems exceedingly limited. We conclude that 3D geometric morphometrics can provide a comprehensive, statistically rigorous phenomic contribution to genetic-based conservation studies.

17.
Front Genet ; 11: 0651, 2020.
Article in English | MEDLINE | ID: mdl-32774343

ABSTRACT

The evolutionary history of Mesozoic mammaliaformes is well studied. Although the backbone of their phylogeny is well resolved, the placement of ecologically specialized groups has remained uncertain. Functional and developmental covariation has long been identified as an important source of phylogenetic error, yet combining incongruent morphological characters altogether is currently a common practice when reconstructing phylogenetic relationships. Ignoring incongruence may inflate the confidence in reconstructing relationships, particularly for the placement of highly derived and ecologically specialized taxa, such as among australosphenidans (particularly, crown monotremes), haramiyidans, and multituberculates. The alternative placement of these highly derived clades can alter the taxonomic constituency and temporal origin of the mammalian crown group. Based on prior hypotheses and correlated homoplasy analyses, we identified cheek teeth and shoulder girdle character complexes as having a high potential to introduce phylogenetic error. We showed that incongruence among mandibulodental, cranial, and postcranial anatomical partitions for the placement of the australosphenidans, haramiyids, and multituberculates could largely be explained by apparently non-phylogenetic covariance from cheek teeth and shoulder girdle characters. Excluding these character complexes brought agreement between anatomical regions and improved the confidence in tree topology. These results emphasize the importance of considering and ameliorating major sources of bias in morphological data, and we anticipate that these will be valuable for confidently integrating morphological and molecular data in phylogenetic and dating analyses.

18.
Syst Biol ; 68(3): 520-537, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30481358

ABSTRACT

Combined "total evidence" analysis of molecular and morphological data offers the opportunity to objectively merge fossils into the tree of life, and challenges the primacy of solely DNA based phylogenetic and dating inference, even among modern taxa. To investigate the relative utility of DNA, morphology, and total evidence for evolutionary inference, we sequenced the first near-complete mitochondrial genomes from extinct Australian megafauna: a 40-50 thousand year old giant short-faced kangaroo (Simosthenurus occidentalis) and giant wallaby (Protemnodon anak). We analyzed the ancient DNA and fossil data alongside comparable data from extant species to infer phylogeny, divergence times, and ancestral body mass among macropods (kangaroos and wallabies). Our results confirm a close relationship between Protemnodon and the iconic kangaroo genus complex "Macropus", and unite the giant Simothenurus with the hare-sized Lagostrophus fasciatus (banded hare-wallaby), suggesting that the latter is the closest living link to the once diverse sthenurine kangaroo radiation. We find that large body size evolved multiple times among kangaroos, coincident with expansion of open woodland habitats beginning in the Late Miocene. In addition, our results suggest that morphological data mislead macropod phylogeny reconstruction and in turn can distort total evidence estimation of divergence dates. However, a novel result with potentially broad application is that the accuracy and precision of reconstructing ancestral body mass was improved by tracing body mass on morphological branch lengths. This is likely due to positive allometric correlation between morphological and body size variation-a relationship that may be masked or even misleadingly inverted with the temporal or molecular branch lengths that typically underpin ancestral body size reconstruction. Our study supports complementary roles for DNA and morphology in evolutionary inference, and opens a new window into the evolution of Australia's unique marsupial fauna.


Subject(s)
DNA/genetics , Fossils/anatomy & histology , Macropodidae/classification , Phylogeny , Animals , Classification , DNA, Ancient , Macropodidae/anatomy & histology , Macropodidae/genetics
19.
BMC Evol Biol ; 18(1): 104, 2018 07 03.
Article in English | MEDLINE | ID: mdl-29969980

ABSTRACT

BACKGROUND: Recent molecular dating estimates for placental mammals echo fossil inferences for an explosive interordinal diversification, but typically place this event some 10-20 million years earlier than the Paleocene fossils, among apparently more "primitive" mammal faunas. RESULTS: However, current models of molecular evolution do not adequately account for parallel rate changes, and result in dramatic divergence underestimates for large, long-lived mammals such as whales and hominids. Calibrating among these taxa shifts the rate model errors deeper in the tree, inflating interordinal divergence estimates. We employ simulations based on empirical rate variation, which show that this "error-shift inflation" can explain previous molecular dating overestimates relative to fossil inferences. Molecular dating accuracy is substantially improved in the simulations by focusing on calibrations for taxa that retain plesiomorphic life-history characteristics. Applying this strategy to the empirical data favours the soft explosive model of placental evolution, in line with traditional palaeontological interpretations - a few Cretaceous placental lineages give rise to a rapid interordinal diversification following the 66 Ma Cretaceous-Paleogene boundary mass extinction. CONCLUSIONS: Our soft explosive model for the diversification of placental mammals brings into agreement previously incongruous molecular, fossil, and ancestral life history estimates, and closely aligns with a growing consensus for a similar model for bird evolution. We show that recent criticism of the soft explosive model relies on ignoring both experimental controls and statistical confidence, as well as misrepresentation, and inconsistent interpretations of morphological phylogeny. More generally, we suggest that the evolutionary properties of adaptive radiations may leave current molecular dating methods susceptible to overestimating the timing of major diversification events.


Subject(s)
Biological Evolution , Eutheria/physiology , Models, Biological , Animals , Biodiversity , Calibration , Computer Simulation , Female , Fossils , Phylogeny , Pregnancy , Time Factors
20.
Genome Biol Evol ; 10(8): 1892-1901, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29947797

ABSTRACT

The globin gene superfamily has been well-characterized in vertebrates, however, there has been limited research in early-diverging lineages, such as phylum Cnidaria. This study aimed to identify globin genes in multiple cnidarian lineages, and use bioinformatic approaches to characterize the evolution, structure, and expression of these genes. Phylogenetic analyses and in silico protein predictions showed that all cnidarians have undergone an expansion of globin genes, which likely have a hexacoordinate protein structure. Our protein modeling has also revealed the possibility of a single pentacoordinate globin lineage in anthozoan species. Some cnidarian globin genes displayed tissue and development specific expression with very few orthologous genes similarly expressed across species. Our phylogenetic analyses also revealed that eumetazoan globin genes form a polyphyletic relationship with vertebrate globin genes. Overall, our analyses suggest that a Ngb-like and GbX-like gene were most likely present in the globin gene repertoire for the last common ancestor of eumetazoans. The identification of a large-scale expansion and subfunctionalization of globin genes in actiniarians provides an excellent starting point to further our understanding of the evolution and function of the globin gene superfamily in early-diverging lineages.


Subject(s)
Globins/genetics , Sea Anemones/genetics , Animals , Evolution, Molecular , Gene Expression Profiling , Gene Expression Regulation , Genetic Association Studies , Likelihood Functions , Multigene Family , Phylogeny , Reproducibility of Results , Sequence Analysis, RNA , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...