Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(5): e0301624, 2024.
Article in English | MEDLINE | ID: mdl-38713678

ABSTRACT

Salmonella enterica serovar Typhi (S. Typhi) is the causative agent of Typhoid fever. Blood culture is the gold standard for clinical diagnosis, but this is often difficult to employ in resource limited settings. Environmental surveillance of waste-impacted waters is a promising supplement to clinical surveillance, however validating methods is challenging in regions where S. Typhi concentrations are low. To evaluate existing S. Typhi environmental surveillance methods, a novel process control organism (PCO) was created as a biosafe surrogate. Using a previous described qPCR assay, a modified PCR amplicon for the staG gene was cloned into E. coli. We developed a target region that was recognized by the Typhoid primers in addition to a non-coding internal probe sequence. A multiplex qPCR reaction was developed that differentiates between the typhoid and control targets, with no cross-reactivity or inhibition of the two probes. The PCO was shown to mimic S. Typhi in lab-based experiments with concentration methods using primary wastewater: filter cartridge, recirculating Moore swabs, membrane filtration, and differential centrifugation. Across all methods, the PCO seeded at 10 CFU/mL and 100 CFU/mL was detected in 100% of replicates. The PCO is detected at similar quantification cycle (Cq) values across all methods at 10 CFU/mL (Average = 32.4, STDEV = 1.62). The PCO was also seeded into wastewater at collection sites in Vellore (India) and Blantyre (Malawi) where S. Typhi is endemic. All methods tested in both countries were positive for the seeded PCO. The PCO is an effective way to validate performance of environmental surveillance methods targeting S. Typhi in surface water.


Subject(s)
Environmental Monitoring , Escherichia coli , Salmonella typhi , Salmonella typhi/genetics , Salmonella typhi/isolation & purification , Escherichia coli/genetics , Escherichia coli/isolation & purification , Environmental Monitoring/methods , Wastewater/microbiology , Typhoid Fever/microbiology , Typhoid Fever/epidemiology , Typhoid Fever/diagnosis , Typhoid Fever/prevention & control , Humans , Water Microbiology
2.
Appl Environ Microbiol ; 90(1): e0142823, 2024 01 24.
Article in English | MEDLINE | ID: mdl-38099657

ABSTRACT

Wastewater-based epidemiology (WBE) expanded rapidly in response to the COVID-19 pandemic. As the public health emergency has ended, researchers and practitioners are looking to shift the focus of existing wastewater surveillance programs to other targets, including bacteria. Bacterial targets may pose some unique challenges for WBE applications. To explore the current state of the field, the National Science Foundation-funded Research Coordination Network (RCN) on Wastewater Based Epidemiology for SARS-CoV-2 and Emerging Public Health Threats held a workshop in April 2023 to discuss the challenges and needs for wastewater bacterial surveillance. The targets and methods used in existing programs were diverse, with twelve different targets and nine different methods listed. Discussions during the workshop highlighted the challenges in adapting existing programs and identified research gaps in four key areas: choosing new targets, relating bacterial wastewater data to human disease incidence and prevalence, developing methods, and normalizing results. To help with these challenges and research gaps, the authors identified steps the larger community can take to improve bacteria wastewater surveillance. This includes developing data reporting standards and method optimization and validation for bacterial programs. Additionally, more work is needed to understand shedding patterns for potential bacterial targets to better relate wastewater data to human infections. Wastewater surveillance for bacteria can help provide insight into the underlying prevalence in communities, but much work is needed to establish these methods.IMPORTANCEWastewater surveillance was a useful tool to elucidate the burden and spread of SARS-CoV-2 during the pandemic. Public health officials and researchers are interested in expanding these surveillance programs to include bacterial targets, but many questions remain. The NSF-funded Research Coordination Network for Wastewater Surveillance of SARS-CoV-2 and Emerging Public Health Threats held a workshop to identify barriers and research gaps to implementing bacterial wastewater surveillance programs.


Subject(s)
Goals , Pandemics , Humans , Wastewater , Wastewater-Based Epidemiological Monitoring , Bacteria , SARS-CoV-2
4.
Food Environ Virol ; 14(4): 355-363, 2022 12.
Article in English | MEDLINE | ID: mdl-35143035

ABSTRACT

Wastewater surveillance for SARS-CoV-2 may serve as a useful source of data for public health departments as the virus is shed in the stool of infected individuals. However, for wastewater data to be actionable, wastewater must be collected, concentrated, and analyzed in a timely manner. This manuscript presents modifications on a skimmed milk concentration protocol to reduce processing time, increase the number of samples that can be processed at once, and enable use in resource-limited settings. Wastewater seeded with Human coronavirus OC43 (OC43) was concentrated using a skimmed milk flocculation protocol, and then pellets were directly extracted with the QIAamp Viral RNA Mini kit. This protocol has a higher average effective volume assayed (6.35 mL) than skimmed milk concentration methods, with and without Vertrel XF™, which involve resuspension of the pellets in PBS extraction prior to nucleic acid extraction (1.28 mL, 1.44 mL, respectively). OC43 was selected as a recovery control organism because both it and SARS-CoV-2 are enveloped respiratory viruses that primarily infect humans resulting in respiratory symptoms. The OC43 percent recovery for the direct extraction protocol (3.4%) is comparable to that of skimmed milk concentration with and without Vertrel XF™ extraction (4.0%, 2.6%, respectively). When comparing SARS-CoV-2 detection using McNemar's chi-square test, the pellet extraction method is not statistically different from skimmed milk concentration, with and without Vertrel XF™ extraction. This suggests that the method performs equally as well as existing methods. Added benefits include reduced time spent per sample and the ability to process more samples at a single time. Direct extraction of skimmed milk pellets is a viable method for quick turnaround of wastewater data for public health interventions.


Subject(s)
COVID-19 , Viruses , Humans , Animals , SARS-CoV-2 , Wastewater , Milk , Wastewater-Based Epidemiological Monitoring , RNA, Viral/genetics
5.
Sci Total Environ ; 760: 144215, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33340739

ABSTRACT

Wastewater1 surveillance of SARS-CoV-2 may be a useful supplement to clinical surveillance as it is shed in feces, there are many asymptomatic cases, and diagnostic testing can have capacity limitations and extended time to results. Although numerous studies have utilized wastewater surveillance for SARS-CoV-2, the methods used were developed and/or standardized for other pathogens. This study evaluates multiple methods for concentration and recovery of SARS-CoV-2 and seeded human coronavirus OC43 from municipal primary wastewater and/or sludge from the Greater Seattle Area (March-July 2020). Methods evaluated include the bag-mediated filtration system (BMFS), with and without Vertrel™ extraction, skimmed milk flocculation, with and without Vertrel™ extraction, polyethylene glycol (PEG) precipitation, ultrafiltration, and sludge extraction. Total RNA was extracted from wastewater concentrates and analyzed for SARS-CoV-2 and OC43 with RT-qPCR. Skimmed milk flocculation without Vertrel™ extraction performed consistently over time and between treatment plants in Seattle-area wastewater with the lowest average OC43 Cq value and smallest variability (24.3; 95% CI: 23.8-24.9), most frequent SARS-CoV-2 detection (48.8% of sampling events), and highest average OC43 percent recovery (9.1%; 95% CI: 6.2-11.9%). Skimmed milk flocculation is also beneficial because it is feasible in low-resource settings. While the BMFS had the highest average volume assayed of 11.9 mL (95% CI: 10.7-13.1 mL), the average OC43 percent recovery was low (0.7%; 95% CI: 0.4-1.0%). Ultrafiltration and PEG precipitation had low average OC43 percent recoveries of 1.0% (95% CI: 0.5-1.6%) and 3.2% (95% CI: 1.3-5.1%), respectively. The slopes and efficiency for the SARS-CoV-2 standard curves were not consistent over time, confirming the need to include a standard curve each run rather than using a single curve for multiple plates. Results suggest that the concentration and detection methods used must be validated for the specific water matrix using a recovery control to assess performance over time.


Subject(s)
COVID-19 , Wastewater , Environmental Monitoring , Humans , SARS-CoV-2 , Sewage
6.
Open Forum Infect Dis ; 5(8): ofy188, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30151413

ABSTRACT

Here we summarize an April 2016, 7-patient cluster of human adenovirus (HAdV) infections in a cardiothoracic surgery intensive care unit. We show that the patients were infected with a single HAdV21b type. Rapid HAdV typing diagnostics and effective antiviral interventions are needed for immunocompromised patients suffering from HAdV infections.

7.
Front Public Health ; 6: 174, 2018.
Article in English | MEDLINE | ID: mdl-29963543

ABSTRACT

This study aimed to evaluate environmental air sampling as an alternative form of active surveillance for respiratory pathogens in clinical settings. Samples were collected from three locations in the Emergency Department at Duke University Hospital Systems from October 2017 to March 2018. Of the 44 samples collected, 12 were positive for known respiratory pathogens including influenza A, influenza D, and adenovirus. Results suggest bioaerosol sampling may serve as a complement to active surveillance in clinical settings. Additionally, since respiratory viruses were detected in aerosol samples, our results suggest that hospital infection control measures, including the use of N95 respirators, could be used to limit the spread of infectious viruses in the air.

8.
PLoS One ; 13(7): e0201295, 2018.
Article in English | MEDLINE | ID: mdl-30052648

ABSTRACT

BACKGROUND: The large livestock operations and dense human population of Southeast Asia are considered a hot-spot for emerging viruses. OBJECTIVES: To determine if the pathogens adenovirus (ADV), coronavirus (CoV), encephalomyocarditis virus (EMCV), enterovirus (EV), influenza A-D (IAV, IBV, ICV, and IDV), porcine circovirus 2 (PCV2), and porcine rotaviruses A and C (RVA and RVC), are aerosolized at the animal-interface, and if humans working in these environments are carrying these viruses in their nasal airways. STUDY: This cross-sectional study took place in Sarawak, Malaysia among 11 pig farms, 2 abattoirs, and 3 animal markets in June and July of 2017. Pig feces, pig oral secretions, bioaerosols, and worker nasal wash samples were collected and analyzed via rPCR and rRT-PCR for respiratory and diarrheal viruses. RESULTS: In all, 55 pig fecal, 49 pig oral or water, 45 bioaerosol, and 78 worker nasal wash samples were collected across 16 sites. PCV2 was detected in 21 pig fecal, 43 pig oral or water, 3 bioaerosol, and 4 worker nasal wash samples. In addition, one or more bioaerosol or pig samples were positive for EV, IAV, and RVC, and one or more worker samples were positive for ADV, CoV, IBV, and IDV. CONCLUSIONS: This study demonstrates that nucleic acids from a number of targeted viruses were present in pig oral secretions and pig fecal samples, and that several viruses were detected in bioaerosol samples or in the nasal passages of humans with occupational exposure to pigs. These results demonstrate the need for future research in strengthening viral surveillance at the human-animal interface, specifically through expanded bioaerosol sampling efforts and a seroepidemiological study of individuals with exposure to pigs in this region for PCV2 infection.


Subject(s)
Diarrhea/virology , Farmers , Respiratory Tract Infections , Swine Diseases/virology , Swine/virology , Virus Diseases , Viruses , Animals , Cross-Sectional Studies , Female , Humans , Malaysia , Male , Occupational Exposure , Respiratory Tract Infections/transmission , Respiratory Tract Infections/virology , Virus Diseases/transmission , Virus Diseases/virology
SELECTION OF CITATIONS
SEARCH DETAIL