Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
IEEE Trans Biomed Eng ; PP2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38640051

ABSTRACT

OBJECTIVE: Transcranial focused ultrasound (tFUS) is being explored for neuroscience research and clinical applications due to its ability to affect precise brain regions noninvasively. The ability to target specific brain regions and localize the beam during these procedures is important for these applications to avoid damage and minimize off-target effects. Here, we present a method to combine optical tracking with magnetic resonance (MR) acoustic radiation force imaging to achieve targeting and localizing of the tFUS beam. This combined method provides steering coordinates to target brain regions within a clinically practical time frame. METHODS: Using an optically tracked hydrophone and bias correction with MR imaging we transformed the FUS focus coordinates into the MR space for targeting and error correction. We validated this method in vivo in 18 macaque FUS studies. RESULTS: Across these in vivo studies a single localization scan allowed for the average targeting error to be reduced from 4.8 mm to 1.4 mm and for multiple brain regions to be targeted with one transducer position. CONCLUSIONS: By reducing targeting error and providing the means to target multiple brain regions within a single session with high accuracy this method will allow further study of the effects of tFUS neuromodulation with more advanced approaches such as simultaneous dual or multi-site brain stimulation.

2.
J Control Release ; 363: 707-720, 2023 11.
Article in English | MEDLINE | ID: mdl-37827222

ABSTRACT

The use of focused ultrasound to open the blood-brain barrier (BBB) has the potential to deliver drugs to specific regions of the brain. The size of the BBB opening and ability to localize the opening determines the spatial extent and is a limiting factor in many applications of BBB opening where targeting a small brain region is desired. Here we evaluate the performance of a system designed for small opening volumes and highlight the unique challenges associated with pushing the spatial precision of this technique. To achieve small volume openings in cortical regions of the macaque brain, we tested a custom 1 MHz array transducer integrated into a magnetic resonance image-guided focused ultrasound system. Using real-time cavitation monitoring, we demonstrated twelve instances of single sonication, small volume BBB opening with average volumes of 59 ± 37 mm3 and 184 ± 2 mm3 in cortical and subcortical targets, respectively. We found high correlation between subject-specific acoustic simulations and observed openings when incorporating grey matter segmentation (R2 = 0.8577), and the threshold for BBB opening based on simulations was 0.53 MPa. Analysis of MRI-based safety assessment and cavitation signals indicate a safe pressure range for 1 MHz BBB opening and suggest that our system can be used to deliver drugs and gene therapy to small brain regions.


Subject(s)
Blood-Brain Barrier , Macaca , Animals , Blood-Brain Barrier/pathology , Brain/diagnostic imaging , Ultrasonography , Sonication/methods , Magnetic Resonance Imaging , Microbubbles
3.
Brain Stimul ; 16(5): 1430-1444, 2023.
Article in English | MEDLINE | ID: mdl-37741439

ABSTRACT

BACKGROUND: MRI-guided transcranial focused ultrasound (MRgFUS) as a next-generation neuromodulation tool can precisely target and stimulate deep brain regions with high spatial selectivity. Combined with MR-ARFI (acoustic radiation force imaging) and using fMRI BOLD signal as functional readouts, our previous studies have shown that low-intensity FUS can excite or suppress neural activity in the somatosensory cortex. OBJECTIVE: To investigate whether low-intensity FUS can suppress nociceptive heat stimulation-induced responses in thalamic nuclei during hand stimulation, and to determine how this suppression influences the information processing flow within nociception networks. FINDINGS: BOLD fMRI activations evoked by 47.5 °C heat stimulation of hand were detected in 24 cortical regions, which belong to sensory, affective, and cognitive nociceptive networks. Concurrent delivery of low-intensity FUS pulses (650 kHz, 550 kPa) to the predefined heat nociceptive stimulus-responsive thalamic centromedial_parafascicular (CM_para), mediodorsal (MD), ventral_lateral (VL_ and ventral_lateral_posteroventral (VLpv) nuclei suppressed their heat responses. Off-target cortical areas exhibited reduced, enhanced, or no significant fMRI signal changes, depending on the specific areas. Differentiable thalamocortical information flow during the processing of nociceptive heat input was observed, as indicated by the time to reach 10% or 30% of the heat-evoked BOLD signal peak. Suppression of thalamic heat responses significantly altered nociceptive processing flow and direction between the thalamus and cortical areas. Modulation of contralateral versus ipsilateral areas by unilateral thalamic activity differed. Signals detected in high-order cortical areas, such as dorsal frontal (DFC) and ventrolateral prefrontal (vlPFC) cortices, exhibited faster response latencies than sensory areas. CONCLUSIONS: The concurrent delivery of FUS suppressed nociceptive heat response in thalamic nuclei and disrupted the nociceptive network. This study offers new insights into the causal functional connections within the thalamocortical networks and demonstrates the modulatory effects of low-intensity FUS on nociceptive information processing.


Subject(s)
Nociception , Thalamic Nuclei , Thalamic Nuclei/physiology , Thalamus , Brain , Cognition
4.
Article in English | MEDLINE | ID: mdl-37028345

ABSTRACT

[[gabstract]][] Focused ultrasound (FUS) can temporarily open the blood-brain barrier (BBB) and increase the delivery of chemotherapeutics, viral vectors, and other agents to the brain parenchyma. To limit FUS BBB opening to a single brain region, the transcranial acoustic focus of the ultrasound transducer must not be larger than the region targeted. In this work, we design and characterize a therapeutic array optimized for BBB opening at the frontal eye field (FEF) in macaques. We used 115 transcranial simulations in four macaques varying f-number and frequency to optimize the design for focus size, transmission, and small device footprint. The design leverages inward steering for focus tightening, a 1-MHz transmit frequency, and can focus to a simulation predicted 2.5- ± 0.3-mm lateral and 9.5- ± 1.0-mm axial full-width at half-maximum spot size at the FEF without aberration correction. The array is capable of steering axially 35 mm outward, 26 mm inward, and laterally 13 mm with 50% the geometric focus pressure. The simulated design was fabricated, and we characterized the performance of the array using hydrophone beam maps in a water tank and through an ex vivo skull cap to compare measurements with simulation predictions, achieving a 1.8-mm lateral and 9.5-mm axial spot size with a transmission of 37% (transcranial, phase corrected). The transducer produced by this design process is optimized for BBB opening at the FEF in macaques.


Subject(s)
Blood-Brain Barrier , Ultrasonic Therapy , Blood-Brain Barrier/diagnostic imaging , Ultrasonography , Brain , Skull/diagnostic imaging
5.
bioRxiv ; 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36909495

ABSTRACT

Focused ultrasound blood-brain barrier (BBB) opening is a promising tool for targeted delivery of therapeutic agents into the brain. The volume of opening determines the extent of therapeutic administration and sets a lower bound on the size of targets which can be selectively treated. We tested a custom 1 MHz array transducer optimized for cortical regions in the macaque brain with the goal of achieving small volume openings. We integrated this device into a magnetic resonance image guided focused ultrasound system and demonstrated twelve instances of small volume BBB opening with average opening volumes of 59 ± 37 mm 3 and 184 ± 2 mm 3 in cortical and subcortical targets, respectively. We developed real-time cavitation monitoring using a passive cavitation detector embedded in the array and characterized its performance on a bench-top flow phantom mimicking transcranial BBB opening procedures. We monitored cavitation during in-vivo procedures and compared cavitation metrics against opening volumes and safety outcomes measured with FLAIR and susceptibility weighted MR imaging. Our findings show small BBB opening at cortical targets in macaques and characterize the safe pressure range for 1 MHz BBB opening. Additionally, we used subject-specific simulations to investigate variance in measured opening volumes and found high correlation (R 2 = 0.8577) between simulation predictions and observed measurements. Simulations suggest the threshold for 1 MHz BBB opening was 0.53 MPa. This system enables BBB opening for drug delivery and gene therapy to be targeted to more specific brain regions.

6.
Ir Med J ; 116(10): 878, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38258737
7.
Article in English | MEDLINE | ID: mdl-38222464

ABSTRACT

Optical tracking is a real-time transducer positioning method for transcranial focused ultrasound (tFUS) procedures, but the predicted focus from optical tracking typically does not incorporate subject-specific skull information. Acoustic simulations can estimate the pressure field when propagating through the cranium but rely on accurately replicating the positioning of the transducer and skull in a simulated space. Here, we develop and characterize the accuracy of a workflow that creates simulation grids based on optical tracking information in a neuronavigated phantom with and without transmission through an ex vivo skull cap. The software pipeline could replicate the geometry of the tFUS procedure within the limits of the optical tracking system (transcranial target registration error (TRE): 3.9 ± 0.7 mm). The simulated focus and the free-field focus predicted by optical tracking had low Euclidean distance errors of 0.5±0.1 and 1.2±0.4 mm for phantom and skull cap, respectively, and some skull-specific effects were captured by the simulation. However, the TRE of simulation informed by optical tracking was 4.6±0.2, which is as large or greater than the focal spot size used by many tFUS systems. By updating the position of the transducer using the original TRE offset, we reduced the simulated TRE to 1.1 ± 0.4 mm. Our study describes a software pipeline for treatment planning, evaluates its accuracy, and demonstrates an approach using MR-acoustic radiation force imaging as a method to improve dosimetry. Overall, our software pipeline helps estimate acoustic exposure, and our study highlights the need for image feedback to increase the accuracy of tFUS dosimetry.

8.
Brain Stimul ; 15(6): 1552-1564, 2022.
Article in English | MEDLINE | ID: mdl-36496128

ABSTRACT

We have previously shown that focused ultrasound (FUS) pulses in low pressure range exerted bidirectional and brain state-dependent neuromodulation in the nonhuman primate somatosensory cortices by fMRI. Here we aim to gain insights about the proposed neuron selective modulation of FUS and probe feedforward versus feedback interactions by simultaneously quantifying the stimulus (FUS pressures: 925, 425, 250 kPa) and response (% BOLD fMRI changes) function at the targeted area 3a/3b and off-target cortical areas at 7T. In resting-state, lowered intensities of FUS resulted in decreased fMRI signal changes at the target area 3a/3b and off-target area 1/2, S2, MCC, insula and auditory cortex, and no signal difference in thalamic VPL and MD nuclei. In activated states, concurrent high-intensity FUS significantly enhanced touch-evoked signals in area 1/2. Medium- and low-intensity FUS significantly suppressed touch-evoked BOLD signals in all areas except in the auditory cortex, VPL and MD thalamic nuclei. Distinct state dependent and dose-response curves led us to hypothesize that FUS's neuromodulatory effects may be mediated through preferential activation of different populations of neurons. Area 3a/3b may have distinct causal feedforward and feedback interactions with Area 1/2, S2, MCC, insula, and VPL. FUS offers a noninvasive neural stimulation tool for dissecting brain circuits and probing causal functional connections.


Subject(s)
Brain , Touch Perception , Animals , Brain/diagnostic imaging , Somatosensory Cortex/physiology , Brain Mapping , Touch/physiology , Magnetic Resonance Imaging/methods
9.
Sci Rep ; 12(1): 14758, 2022 08 30.
Article in English | MEDLINE | ID: mdl-36042266

ABSTRACT

The blood-brain barrier (BBB) prevents harmful toxins from entering brain but can also inhibit therapeutic molecules designed to treat neurodegenerative diseases. Focused ultrasound (FUS) combined with microbubbles can enhance permeability of BBB and is often performed under MRI guidance. We present an all-ultrasound system capable of targeting desired regions to open BBB with millimeter-scale accuracy in two dimensions based on Doppler images. We registered imaging coordinates to FUS coordinates with target registration error of 0.6 ± 0.3 mm and used the system to target microbubbles flowing in cellulose tube in two in vitro scenarios (agarose-embedded and through a rat skull), while receiving echoes on imaging transducer. We created passive acoustic maps from received echoes and found error between intended location in imaging plane and location of pixel with maximum intensity after passive acoustic maps reconstruction to be within 2 mm in 5/6 cases. We validated ultrasound-guided procedure in three in vivo rat brains by delivering MRI contrast agent to cortical regions of rat brains after BBB opening. Landmark-based registration of vascular maps created with MRI and Doppler ultrasound revealed BBB opening inside the intended focus with targeting accuracy within 1.5 mm. Combined use of power Doppler imaging with passive acoustic mapping demonstrates an ultrasound-based solution to guide focused ultrasound with high precision in rodents.


Subject(s)
Blood-Brain Barrier , Microbubbles , Acoustics , Animals , Blood-Brain Barrier/diagnostic imaging , Brain/diagnostic imaging , Drug Delivery Systems/methods , Magnetic Resonance Imaging , Rats , Ultrasonography, Doppler
10.
JASA Express Lett ; 2(6): 062001, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35782333

ABSTRACT

Localizing the focus during transcranial focused ultrasound procedures is important to ensure accurate targeting of specific brain regions and interpretation of results. Magnetic resonance acoustic radiation force imaging uses the displacement induced by the ultrasound focus in the brain to localize the beam, but the high pressure required to displace brain tissue may cause damage or confounds during subsequent neuromodulatory experiments. Here, reduced apertures were applied to a phased array transducer to generate comparable displacement to the full aperture but with 20% lower free field pressure.

11.
Adv Funct Mater ; 32(8)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35603230

ABSTRACT

We report innovative scalable, vertical, ultra-sharp nanowire arrays that are individually addressable to enable long-term, native recordings of intracellular potentials. Stable amplitudes of intracellular potentials from 3D tissue-like networks of neurons and cardiomyocytes are obtained. Individual electrical addressability is necessary for high-fidelity intracellular electrophysiological recordings. This study paves the way toward predictive, high-throughput, and low-cost electrophysiological drug screening platforms.

12.
ACS Appl Mater Interfaces ; 14(13): 14871-14886, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35344326

ABSTRACT

Photodynamic therapy (PDT) has been explored as a therapeutic strategy to clear toxic amyloid aggregates involved in neurodegenerative disorders such as Alzheimer's disease. A major limitation of PDT is off-target oxidation, which can be lethal for the surrounding cells. We have shown that a novel class of oligo-p-phenylene ethynylenes (OPEs) exhibit selective binding and fluorescence turn-on in the presence of prefibrillar and fibrillar aggregates of disease-relevant proteins such as amyloid-ß (Aß) and α-synuclein. Concomitant with fluorescence turn-on, OPE also photosensitizes singlet oxygen under illumination through the generation of a triplet state, pointing to the potential application of OPEs as photosensitizers in PDT. Herein, we investigated the photosensitizing activity of an anionic OPE for the photo-oxidation of Aß fibrils and compared its efficacy to the well-known but nonselective photosensitizer methylene blue (MB). Our results show that, while MB photo-oxidized both monomeric and fibrillar conformers of Aß40, OPE oxidized only Aß40 fibrils, targeting two histidine residues on the fibril surface and a methionine residue located in the fibril core. Oxidized fibrils were shorter and more dispersed but retained the characteristic ß-sheet rich fibrillar structure and the ability to seed further fibril growth. Importantly, the oxidized fibrils displayed low toxicity. We have thus discovered a class of novel theranostics for the simultaneous detection and oxidization of amyloid aggregates. Importantly, the selectivity of OPE's photosensitizing activity overcomes the limitation of off-target oxidation of traditional photosensitizers and represents an advancement of PDT as a viable strategy to treat neurodegenerative disorders.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Alzheimer Disease/metabolism , Amyloid/chemistry , Amyloid beta-Peptides/metabolism , Amyloidogenic Proteins , Humans , Peptide Fragments/chemistry , Protein Conformation, beta-Strand
13.
Clin Neurophysiol ; 135: 51-73, 2022 03.
Article in English | MEDLINE | ID: mdl-35033772

ABSTRACT

Transcranial ultrasound stimulation (TUS) holds great potential as a tool to alter neural circuits non-invasively in both animals and humans. In contrast to established non-invasive brain stimulation methods, ultrasonic waves can be focused on both cortical and deep brain targets with the unprecedented spatial resolution as small as a few cubic millimeters. This focusing allows exclusive targeting of small subcortical structures, previously accessible only by invasive deep brain stimulation devices. The neuromodulatory effects of TUS are likely derived from the kinetic interaction of the ultrasound waves with neuronal membranes and their constitutive mechanosensitive ion channels, to produce short term and long-lasting changes in neuronal excitability and spontaneous firing rate. After decades of mechanistic and safety investigation, the technique has finally come of age, and an increasing number of human TUS studies are expected. Given its excellent compatibility with non-invasive brain mapping techniques, such as electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), as well as neuromodulatory techniques, such as transcranial magnetic stimulation (TMS), systemic TUS effects can readily be assessed in both basic and clinical research. In this review, we present the fundamentals of TUS for a broader audience. We provide up-to-date information on the physical and neurophysiological mechanisms of TUS, available readouts for its neural and behavioral effects, insights gained from animal models and human studies, potential clinical applications, and safety considerations. Moreover, we discuss the indirect effects of TUS on the nervous system through peripheral co-stimulation and how these confounding factors can be mitigated by proper control conditions.


Subject(s)
Brain/physiology , Evoked Potentials , Neuronal Plasticity , Ultrasonography, Interventional/methods , Animals , Brain/cytology , Humans , Neurons/metabolism , Neurons/physiology , Neurons/radiation effects , Ultrasonic Waves
14.
Nanotechnology ; 33(16)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-34959227

ABSTRACT

Living cells rely on numerous protein-protein, RNA-protein and DNA-protein interactions for processes such as gene expression, biomolecular assembly, protein and RNA degradation. Single-molecule microscopy and spectroscopy are ideal tools for real-time observation and quantification of nucleic acids-protein and protein-protein interactions. One of the major drawbacks of conventional single-molecule imaging methods is low throughput. Methods such as sequencing by synthesis utilizing nanofabrication and single-molecule spectroscopy have brought high throughput into the realm of single-molecule biology. The Pacific Biosciences RS2 sequencer utilizes sequencing by synthesis within nanophotonic zero mode waveguides. A number of years ago this instrument was unlocked by Pacific Biosciences for custom use by researchers allowing them to monitor biological interactions at the single-molecule level with high throughput. In this capability letter we demonstrate the use of the RS2 sequencer for real-time observation of DNA-to-RNA transcription and RNA-protein interactions. We use a relatively complex model-transcription of structured ribosomal RNA fromE. coliand interactions of ribosomal RNA with ribosomal proteins. We also show evidence of observation of transcriptional pausing without the application of an external force (as is required for single-molecule pausing studies using optical traps). Overall, in the unlocked, custom mode, the RS2 sequencer can be used to address a wide variety of biological assembly and interaction questions at the single-molecule level with high throughput. This instrument is available for use at the Center for Integrated Nanotechnologies Gateway located at Los Alamos National Laboratory.


Subject(s)
DNA/metabolism , Nanotechnology/methods , RNA/metabolism , DNA/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , RNA/genetics , RNA, Ribosomal/metabolism , Ribosomal Proteins/metabolism , Single Molecule Imaging , Transcription, Genetic
15.
Chem Commun (Camb) ; 57(77): 9922-9925, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34498621

ABSTRACT

We report a critical advance in the generation and characterization of peptoid hetero-oligomers. A library of sub-monomers with amine and carboxylate side-chains are combined in different sequences using microwave-assisted synthesis. Their sequence-structure propensity is confirmed by circular dichroism, and conformer subtypes are enumerated by NMR. Biasing the ψ-angle backbone to trans (180°) in Monte Carlo modelling favors i to i + 3 naphthyl-naphthyl stacking, and matches experimental ensemble distributions. Taken together, high-yield synthesis of heterooligomers and NMR with structure prediction enables rapid determination of sequences that induce secondary structural propensities for predictive design of hydrophilic peptidomimetic foldamers and their future libraries.

16.
Int J Pharm ; 597: 120340, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33545284

ABSTRACT

Biocompatible nanoparticles composed of poly(lactic-co-glycolic acid) (PLGA) are used as drug and vaccine delivery systems because of their tunability in size and sustained release of cargo molecules. While the use of toxic stabilizers such as polyvinyl alcohol (PVA) limit the utility of PLGA, stabilizer-free PLGA nanoparticles are rarely used because they can be challenging to prepare. Here, we developed a tunable, stabilizer-free PLGA nanoparticle formulation capable of encapsulating plasmid DNA and demonstrated the formation of an elastin-like polymer PLGA hybrid nanoparticle with exceptional stability and biocompatibility. A suite of PLGAs were fabricated using solvent evaporation methods and assessed for particle size and stability in water. We find that under physiological conditions (PBS at 37˚C), the most stable PLGA formulation (P4) was found to contain a greater L:G ratio (65:35), lower MW, and carboxyl terminus. Subsequent experiments determined P4 nanoparticles were as stable as those made with PVA, yet significantly less cytotoxic. Variation in particle size was achieved through altering PLGA stoichiometry while maintaining the ability to encapsulate DNA and were modified with elastin-like polymers for increased immune tolerance. Overall, a useful method for tunable, stabilizer-free PLGA nanoparticle formulation was developed for use in drug and vaccine delivery, and immune targeting.


Subject(s)
Nanoparticles , Polyglycolic Acid , Drug Delivery Systems , Elastin , Lactic Acid , Particle Size , Polylactic Acid-Polyglycolic Acid Copolymer
17.
Brain Stimul ; 14(2): 261-272, 2021.
Article in English | MEDLINE | ID: mdl-33460838

ABSTRACT

Transcranial focused ultrasound (FUS) stimulation under MRI guidance, coupled with functional MRI (fMRI) monitoring of effects, offers a precise, noninvasive technology to dissect functional brain circuits and to modulate altered brain functional networks in neurological and psychiatric disorders. Here we show that ultrasound at moderate intensities modulated neural activity bi-directionally. Concurrent sonication of somatosensory areas 3a/3b with 250 kHz FUS suppressed the fMRI signals produced there by peripheral tactile stimulation, while at the same time eliciting fMRI activation at inter-connected, off-target brain regions. Direct FUS stimulation of the cortex resulted in different degrees of BOLD signal changes across all five off-target regions, indicating that its modulatory effects on active and resting neurons differed. This is the first demonstration of the dual suppressive and excitative modulations of FUS on a specific functional circuit and of ability of concurrent FUS and MRI to evaluate causal interactions between functional circuits with neuron-class selectivity.


Subject(s)
Brain , Magnetic Resonance Imaging , Animals , Brain/diagnostic imaging , Brain Mapping , Female , Humans , Primates , Rest
18.
Ultrasound Med Biol ; 47(3): 679-692, 2021 03.
Article in English | MEDLINE | ID: mdl-33341303

ABSTRACT

Neuromodulation with focused ultrasound (FUS) is being widely explored as a non-invasive tool to stimulate focal brain regions because of its superior spatial resolution and coverage compared with other neuromodulation methods. The precise effects of FUS stimulation on specific regions of the brain are not yet fully understood. Here, we characterized the behavioral effects of FUS stimulation directly applied through a craniotomy over the macaque frontal eye field (FEF). In macaque monkeys making directed eye movements to perform visual search tasks with direct or arbitrary responses, focused ultrasound was applied through a craniotomy over the FEF. Saccade response times (RTs) and error rates were determined for trials without or with FUS stimulation with pulses at a peak negative pressure of either 250 or 425 kPa. Both RTs and error rates were affected by FUS. Responses toward a target located contralateral to the FUS stimulation were approximately 3 ms slower in the presence of FUS in both monkeys studied, while only one exhibited a slowing of responses for ipsilateral targets. Error rates were lower in one monkey in this study. In another search task requiring making eye movements toward a target (pro-saccades) or in the opposite direction (anti-saccades), the RT for pro-saccades increased in the presence of FUS stimulation. Our results indicate the effectiveness of FUS to modulate saccadic responses when stimulating FEF in awake, behaving non-human primates.


Subject(s)
Frontal Lobe/radiation effects , Ultrasonic Waves , Animals , Macaca mulatta , Male
19.
Phys Med Biol ; 65(20): 205004, 2020 10 12.
Article in English | MEDLINE | ID: mdl-32438353

ABSTRACT

Thermal ablation by ultrasound is being explored as a local therapy for cancers of soft tissue, such as the liver or breast. One challenge for these treatments are off-target effects, including heating outside of the intended region or skin burns. Improvements in heating efficiency can mitigate these undesired outcomes, and here, we describe methods for using phase-shift nanodroplets (PSNDs) with multi-focus sonications to enhance volumetric ablation and ablation efficiency at constant powers while increasing the pre-focal temperature by less than 6 [Formula: see text]C. Multi-focus ablation with 4 foci performed the best and achieved a mean ablation volume of 120.2 ± 22.4 mm3 and ablation efficiency of 0.04 mm3 J-1 versus an ablation volume of 61.2 ± 21.16 mm3 and ablation efficiency of 0.02 mm3 J-1 in single focus case. The combined use of PSNDs with multi-focal ultrasound presented here is a new approach to increasing ablation efficiency while reducing off-target effects and could be generally applied in various focused ultrasound thermal ablation treatments.


Subject(s)
High-Intensity Focused Ultrasound Ablation/methods , Hot Temperature , Nanotechnology , Sonication , Humans , Liver/surgery
20.
Sci Rep ; 9(1): 16235, 2019 11 07.
Article in English | MEDLINE | ID: mdl-31700021

ABSTRACT

The aim of this study was to improve the sensitivity of magnetic resonance-acoustic radiation force imaging (MR-ARFI) to minimize pressures required to localize focused ultrasound (FUS) beams, and to establish safe FUS localization parameters for ongoing ultrasound neuromodulation experiments in living non-human primates. We developed an optical tracking method to ensure that the MR-ARFI motion-encoding gradients (MEGs) were aligned with a single-element FUS transducer and that the imaged slice was prescribed at the optically tracked location of the acoustic focus. This method was validated in phantoms, which showed that MR-ARFI-derived displacement sensitivity is maximized when the MR-ARFI MEGs were maximally aligned with the FUS propagation direction. The method was then applied in vivo to acquire displacement images in two healthy macaque monkeys (M fascicularis) which showed the FUS beam within the brain. Temperature images were acquired using MR thermometry to provide an estimate of in vivo brain temperature changes during MR-ARFI, and pressure and thermal simulations of the acoustic pulses were performed using the k-Wave package which showed no significant heating at the focus of the FUS beam. The methods presented here will benefit the multitude of transcranial FUS applications as well as future human applications.


Subject(s)
Acoustics , Magnetic Resonance Imaging/adverse effects , Safety , Skull , Ultrasonic Waves/adverse effects , Animals , Brain/diagnostic imaging , Macaca , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...