Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Genome Biol ; 25(1): 89, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589921

ABSTRACT

Advancements in cytometry technologies have enabled quantification of up to 50 proteins across millions of cells at single cell resolution. Analysis of cytometry data routinely involves tasks such as data integration, clustering, and dimensionality reduction. While numerous tools exist, many require extensive run times when processing large cytometry data containing millions of cells. Existing solutions, such as random subsampling, are inadequate as they risk excluding rare cell subsets. To address this, we propose SuperCellCyto, an R package that builds on the SuperCell tool which groups highly similar cells into supercells. SuperCellCyto is available on GitHub ( https://github.com/phipsonlab/SuperCellCyto ) and Zenodo ( https://doi.org/10.5281/zenodo.10521294 ).


Subject(s)
Research , Single-Cell Analysis , Cluster Analysis , Software
2.
Genome Biol ; 25(1): 99, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637899

ABSTRACT

Spatial molecular data has transformed the study of disease microenvironments, though, larger datasets pose an analytics challenge prompting the direct adoption of single-cell RNA-sequencing tools including normalization methods. Here, we demonstrate that library size is associated with tissue structure and that normalizing these effects out using commonly applied scRNA-seq normalization methods will negatively affect spatial domain identification. Spatial data should not be specifically corrected for library size prior to analysis, and algorithms designed for scRNA-seq data should be adopted with caution.


Subject(s)
Gene Expression Profiling , Single-Cell Analysis , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Gene Expression Profiling/methods , Algorithms , Biology
4.
Cell Rep ; 42(1): 111980, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36641753

ABSTRACT

In the conventional model of transcriptional activation, transcription factors bind to response elements and recruit co-factors, including histone acetyltransferases. Contrary to this model, we show that the histone acetyltransferase KAT7 (HBO1/MYST2) is required genome wide for histone H3 lysine 14 acetylation (H3K14ac). Examining neural stem cells, we find that KAT7 and H3K14ac are present not only at transcribed genes but also at inactive genes, intergenic regions, and in heterochromatin. KAT7 and H3K14ac were not required for the continued transcription of genes that were actively transcribed at the time of loss of KAT7 but indispensable for the activation of repressed genes. The absence of KAT7 abrogates neural stem cell plasticity, diverse differentiation pathways, and cerebral cortex development. Re-expression of KAT7 restored stem cell developmental potential. Overexpression of KAT7 enhanced neuron and oligodendrocyte differentiation. Our data suggest that KAT7 prepares chromatin for transcriptional activation and is a prerequisite for gene activation.


Subject(s)
Cell Plasticity , Histones , Histones/metabolism , Transcriptional Activation/genetics , Acetylation , Cell Plasticity/genetics , Stem Cells/metabolism , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism
6.
Bioinformatics ; 38(20): 4720-4726, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36005887

ABSTRACT

MOTIVATION: Single cell RNA-Sequencing (scRNA-seq) has rapidly gained popularity over the last few years for profiling the transcriptomes of thousands to millions of single cells. This technology is now being used to analyse experiments with complex designs including biological replication. One question that can be asked from single cell experiments, which has been difficult to directly address with bulk RNA-seq data, is whether the cell type proportions are different between two or more experimental conditions. As well as gene expression changes, the relative depletion or enrichment of a particular cell type can be the functional consequence of disease or treatment. However, cell type proportion estimates from scRNA-seq data are variable and statistical methods that can correctly account for different sources of variability are needed to confidently identify statistically significant shifts in cell type composition between experimental conditions. RESULTS: We have developed propeller, a robust and flexible method that leverages biological replication to find statistically significant differences in cell type proportions between groups. Using simulated cell type proportions data, we show that propeller performs well under a variety of scenarios. We applied propeller to test for significant changes in cell type proportions related to human heart development, ageing and COVID-19 disease severity. AVAILABILITY AND IMPLEMENTATION: The propeller method is publicly available in the open source speckle R package (https://github.com/phipsonlab/speckle). All the analysis code for the article is available at the associated analysis website: https://phipsonlab.github.io/propeller-paper-analysis/. The speckle package, analysis scripts and datasets have been deposited at https://doi.org/10.5281/zenodo.7009042. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
COVID-19 , Single-Cell Analysis , Gene Expression Profiling , Humans , RNA , Sequence Analysis, RNA , Software
7.
Genome Biol ; 22(1): 173, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34103055

ABSTRACT

DNA methylation is one of the most commonly studied epigenetic marks, due to its role in disease and development. Illumina methylation arrays have been extensively used to measure methylation across the human genome. Methylation array analysis has primarily focused on preprocessing, normalization, and identification of differentially methylated CpGs and regions. GOmeth and GOregion are new methods for performing unbiased gene set testing following differential methylation analysis. Benchmarking analyses demonstrate GOmeth outperforms other approaches, and GOregion is the first method for gene set testing of differentially methylated regions. Both methods are publicly available in the missMethyl Bioconductor R package.


Subject(s)
DNA Methylation/genetics , Genome, Human , Bias , Blood Cells/metabolism , CpG Islands/genetics , Gene Ontology , Humans
8.
Circulation ; 143(16): 1614-1628, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33682422

ABSTRACT

BACKGROUND: Despite in-depth knowledge of the molecular mechanisms controlling embryonic heart development, little is known about the signals governing postnatal maturation of the human heart. METHODS: Single-nucleus RNA sequencing of 54 140 nuclei from 9 human donors was used to profile transcriptional changes in diverse cardiac cell types during maturation from fetal stages to adulthood. Bulk RNA sequencing and the Assay for Transposase-Accessible Chromatin using sequencing were used to further validate transcriptional changes and to profile alterations in the chromatin accessibility landscape in purified cardiomyocyte nuclei from 21 human donors. Functional validation studies of sex steroids implicated in cardiac maturation were performed in human pluripotent stem cell-derived cardiac organoids and mice. RESULTS: Our data identify the progesterone receptor as a key mediator of sex-dependent transcriptional programs during cardiomyocyte maturation. Functional validation studies in human cardiac organoids and mice demonstrate that the progesterone receptor drives sex-specific metabolic programs and maturation of cardiac contractile properties. CONCLUSIONS: These data provide a blueprint for understanding human heart maturation in both sexes and reveal an important role for the progesterone receptor in human heart development.


Subject(s)
Heart/physiopathology , Receptors, Progesterone/metabolism , Female , Humans , Male , Sex Factors
10.
Development ; 146(12)2019 06 12.
Article in English | MEDLINE | ID: mdl-31118232

ABSTRACT

Recent advances in the generation of kidney organoids and the culture of primary nephron progenitors from mouse and human have been based on knowledge of the molecular basis of kidney development in mice. Although gene expression during kidney development has been intensely investigated, single cell profiling provides new opportunities to further subsect component cell types and the signalling networks at play. Here, we describe the generation and analysis of 6732 single cell transcriptomes from the fetal mouse kidney [embryonic day (E)18.5] and 7853 sorted nephron progenitor cells (E14.5). These datasets provide improved resolution of cell types and specific markers, including subdivision of the renal stroma and heterogeneity within the nephron progenitor population. Ligand-receptor interaction and pathway analysis reveals novel crosstalk between cellular compartments and associates new pathways with differentiation of nephron and ureteric epithelium cell types. We identify transcriptional congruence between the distal nephron and ureteric epithelium, showing that most markers previously used to identify ureteric epithelium are not specific. Together, this work improves our understanding of metanephric kidney development and provides a template to guide the regeneration of renal tissue.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Developmental , Kidney/embryology , Receptor Cross-Talk , Single-Cell Analysis/methods , Algorithms , Animals , Cell Differentiation , Cell Lineage , Epithelium/embryology , Kidney/cytology , Ligands , Mice , Mice, Inbred C57BL , Nephrons/embryology , Organogenesis , Signal Transduction , Stem Cells/cytology , Transcriptome , Ureter/embryology
11.
Nat Methods ; 16(1): 79-87, 2019 01.
Article in English | MEDLINE | ID: mdl-30573816

ABSTRACT

The utility of human pluripotent stem cell-derived kidney organoids relies implicitly on the robustness and transferability of the protocol. Here we analyze the sources of transcriptional variation in a specific kidney organoid protocol. Although individual organoids within a differentiation batch showed strong transcriptional correlation, we noted significant variation between experimental batches, particularly in genes associated with temporal maturation. Single-cell profiling revealed shifts in nephron patterning and proportions of component cells. Distinct induced pluripotent stem cell clones showed congruent transcriptional programs, with interexperimental and interclonal variation also strongly associated with nephron patterning. Epithelial cells isolated from organoids aligned with total organoids at the same day of differentiation, again implicating relative maturation as a confounder. This understanding of experimental variation facilitated an optimized analysis of organoid-based disease modeling, thereby increasing the utility of kidney organoids for personalized medicine and functional genomics.


Subject(s)
Kidney/metabolism , Organoids/metabolism , Cell Differentiation/genetics , Clone Cells , Epithelial Cells/cytology , Gene Expression Profiling , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Kidney/cytology , Kidney Diseases/genetics , Kidney Diseases/pathology , Models, Biological , Organoids/cytology , Reproducibility of Results , Single-Cell Analysis , Transcription, Genetic
12.
Nat Commun ; 9(1): 5167, 2018 12 04.
Article in English | MEDLINE | ID: mdl-30514835

ABSTRACT

The podocytes within the glomeruli of the kidney maintain the filtration barrier by forming interdigitating foot processes with intervening slit diaphragms, disruption in which results in proteinuria. Studies into human podocytopathies to date have employed primary or immortalised podocyte cell lines cultured in 2D. Here we compare 3D human glomeruli sieved from induced pluripotent stem cell-derived kidney organoids with conditionally immortalised human podocyte cell lines, revealing improved podocyte-specific gene expression, maintenance in vitro of polarised protein localisation and an improved glomerular basement membrane matrisome compared to 2D cultures. Organoid-derived glomeruli retain marker expression in culture for 96 h, proving amenable to toxicity screening. In addition, 3D organoid glomeruli from a congenital nephrotic syndrome patient with compound heterozygous NPHS1 mutations reveal reduced protein levels of both NEPHRIN and PODOCIN. Hence, human iPSC-derived organoid glomeruli represent an accessible approach to the in vitro modelling of human podocytopathies and screening for podocyte toxicity.


Subject(s)
Drug Evaluation, Preclinical , Kidney Glomerulus/cytology , Organoids/cytology , Podocytes/cytology , Cell Culture Techniques/methods , Cell Line , Cells, Cultured , Collagen/metabolism , Female , Gene Expression , Gene Expression Profiling , Humans , Immunohistochemistry , Induced Pluripotent Stem Cells/cytology , Insulin/pharmacology , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Kidney , Laminin/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mutation , Nephrotic Syndrome/pathology , Organoids/drug effects , Podocytes/drug effects , Sequence Analysis , Sequence Analysis, RNA , Stem Cells
13.
PLoS One ; 13(9): e0204038, 2018.
Article in English | MEDLINE | ID: mdl-30231073

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) have been identified as important contributors to the regulation of early fetal cardiopulmonary development. However, miRNA expression profiles during late gestation and the early neonatal period are not fully elaborated in large mammals such as sheep (ovis aries). The aim of this study was to sequence miRNA from cardiopulmonary tissues in late gestation and neonate sheep to identify changes in miRNA expression. METHODS: Illumina HiSeq next-generation deep sequencing (NGS) was performed on ovine tissues from the left (LV) and right ventricles (RV), lungs and pulmonary artery (PA) of preterm fetuses (128 days), near-term fetuses (140 days) (term = 148 days) and neonatal lambs (5 days). NGS reads were mapped to the sheep genome (OviAri) and published miRNA sequences. RESULTS: Of 1345 cardiopulmonary miRNAs that were sequenced, relatively few major shifts in miRNA expression were detected with increased age from near term to neonates, and were confirmed by quantitative real-time PCR: bta-miR-146a (lung), bta-miR-22-3p (lung, LV), hsa-miR-335* (lung, PA), and miR-210 (lung, PA, LV). CONCLUSIONS: Sequencing of miRNA led to identification of four predominant miRNA in ovine cardiopulmonary tissues which alter expression during late gestation and the early neonatal period, concurrent with important functional changes in heart and lungs.


Subject(s)
MicroRNAs/genetics , Sheep, Domestic/embryology , Sheep, Domestic/genetics , Animals , Animals, Newborn , Base Sequence , Female , Fetal Development/genetics , Fetal Heart/metabolism , Gene Expression Regulation, Developmental , Gestational Age , Heart/growth & development , High-Throughput Nucleotide Sequencing , Lung/embryology , Lung/growth & development , Lung/metabolism , MicroRNAs/metabolism , Myocardium/metabolism , Pregnancy , Real-Time Polymerase Chain Reaction , Sequence Analysis, RNA , Sheep, Domestic/growth & development
14.
Genome Biol ; 19(1): 121, 2018 08 21.
Article in English | MEDLINE | ID: mdl-30129428

ABSTRACT

Short tandem repeat (STR) expansions have been identified as the causal DNA mutation in dozens of Mendelian diseases. Most existing tools for detecting STR variation with short reads do so within the read length and so are unable to detect the majority of pathogenic expansions. Here we present STRetch, a new genome-wide method to scan for STR expansions at all loci across the human genome. We demonstrate the use of STRetch for detecting STR expansions using short-read whole-genome sequencing data at known pathogenic loci as well as novel STR loci. STRetch is open source software, available from github.com/Oshlack/STRetch .


Subject(s)
DNA Repeat Expansion/genetics , Microsatellite Repeats/genetics , Software , Alleles , Chromosomes, Human/genetics , Genetic Loci , Genome, Human , Humans , Polymerase Chain Reaction
15.
PLoS Comput Biol ; 14(6): e1006245, 2018 06.
Article in English | MEDLINE | ID: mdl-29939984

ABSTRACT

As single-cell RNA-sequencing (scRNA-seq) datasets have become more widespread the number of tools designed to analyse these data has dramatically increased. Navigating the vast sea of tools now available is becoming increasingly challenging for researchers. In order to better facilitate selection of appropriate analysis tools we have created the scRNA-tools database (www.scRNA-tools.org) to catalogue and curate analysis tools as they become available. Our database collects a range of information on each scRNA-seq analysis tool and categorises them according to the analysis tasks they perform. Exploration of this database gives insights into the areas of rapid development of analysis methods for scRNA-seq data. We see that many tools perform tasks specific to scRNA-seq analysis, particularly clustering and ordering of cells. We also find that the scRNA-seq community embraces an open-source and open-science approach, with most tools available under open-source licenses and preprints being extensively used as a means to describe methods. The scRNA-tools database provides a valuable resource for researchers embarking on scRNA-seq analysis and records the growth of the field over time.


Subject(s)
RNA, Small Cytoplasmic/analysis , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Base Sequence/genetics , Cluster Analysis , Databases, Genetic , Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing/methods , RNA , RNA, Small Cytoplasmic/genetics , Software
16.
Am J Hum Genet ; 102(5): 816-831, 2018 05 03.
Article in English | MEDLINE | ID: mdl-29706353

ABSTRACT

Despite the increasing diagnostic rate of genomic sequencing, the genetic basis of more than 50% of heritable kidney disease remains unresolved. Kidney organoids differentiated from induced pluripotent stem cells (iPSCs) of individuals affected by inherited renal disease represent a potential, but unvalidated, platform for the functional validation of novel gene variants and investigation of underlying pathogenetic mechanisms. In this study, trio whole-exome sequencing of a prospectively identified nephronophthisis (NPHP) proband and her parents identified compound-heterozygous variants in IFT140, a gene previously associated with NPHP-related ciliopathies. IFT140 plays a key role in retrograde intraflagellar transport, but the precise downstream cellular mechanisms responsible for disease presentation remain unknown. A one-step reprogramming and gene-editing protocol was used to derive both uncorrected proband iPSCs and isogenic gene-corrected iPSCs, which were differentiated to kidney organoids. Proband organoid tubules demonstrated shortened, club-shaped primary cilia, whereas gene correction rescued this phenotype. Differential expression analysis of epithelial cells isolated from organoids suggested downregulation of genes associated with apicobasal polarity, cell-cell junctions, and dynein motor assembly in proband epithelial cells. Matrigel cyst cultures confirmed a polarization defect in proband versus gene-corrected renal epithelium. As such, this study represents a "proof of concept" for using proband-derived iPSCs to model renal disease and illustrates dysfunctional cellular pathways beyond the primary cilium in the setting of IFT140 mutations, which are established for other NPHP genotypes.


Subject(s)
Cilia/pathology , Induced Pluripotent Stem Cells/metabolism , Kidney/pathology , Organoids/pathology , Amino Acid Sequence , Base Sequence , Carrier Proteins/chemistry , Carrier Proteins/genetics , Cells, Cultured , Cellular Reprogramming/genetics , Cerebellar Ataxia/genetics , Epithelial Cells/metabolism , Female , Fibroblasts/pathology , Flagella/metabolism , Gene Editing , Gene Expression Profiling , Heterozygote , Humans , Induced Pluripotent Stem Cells/pathology , Kidney/diagnostic imaging , Phenotype , RNA Stability/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproducibility of Results , Retinitis Pigmentosa/genetics , Spheroids, Cellular/metabolism , Spheroids, Cellular/pathology , Exome Sequencing
17.
Kidney Int ; 93(3): 589-598, 2018 03.
Article in English | MEDLINE | ID: mdl-29217079

ABSTRACT

The regulation of final nephron number in the kidney is poorly understood. Cessation of nephron formation occurs when the self-renewing nephron progenitor population commits to differentiation. Transcription factors within this progenitor population, such as SIX2, are assumed to control expression of genes promoting self-renewal such that homozygous Six2 deletion results in premature commitment and an early halt to kidney development. In contrast, Six2 heterozygotes were assumed to be unaffected. Using quantitative morphometry, we found a paradoxical 18% increase in ureteric branching and final nephron number in Six2 heterozygotes, despite evidence for reduced levels of SIX2 protein and transcript. This was accompanied by a clear shift in nephron progenitor identity with a distinct subset of downregulated progenitor genes such as Cited1 and Meox1 while other genes were unaffected. The net result was an increase in nephron progenitor proliferation, as assessed by elevated EdU (5-ethynyl-2'-deoxyuridine) labeling, an increase in MYC protein, and transcriptional upregulation of MYC target genes. Heterozygosity for Six2 on an Fgf20-/- background resulted in premature differentiation of the progenitor population, confirming that progenitor regulation is compromised in Six2 heterozygotes. Overall, our studies reveal a unique dose response of nephron progenitors to the level of SIX2 protein in which the role of SIX2 in progenitor proliferation versus self-renewal is separable.


Subject(s)
Cell Proliferation/genetics , Cell Self Renewal/genetics , Haploinsufficiency , Homeodomain Proteins/genetics , Morphogenesis/genetics , Nephrons/metabolism , Stem Cells/metabolism , Transcription Factors/genetics , Animals , Apoptosis Regulatory Proteins , Fibroblast Growth Factors/deficiency , Fibroblast Growth Factors/genetics , Gene Expression Regulation, Developmental , Genotype , Heterozygote , Homeodomain Proteins/metabolism , Mice, Knockout , Nephrons/embryology , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phenotype , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Signal Transduction/genetics , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription Factors/deficiency
18.
Genome Biol ; 18(1): 174, 2017 09 12.
Article in English | MEDLINE | ID: mdl-28899397

ABSTRACT

As single-cell RNA sequencing (scRNA-seq) technologies have rapidly developed, so have analysis methods. Many methods have been tested, developed, and validated using simulated datasets. Unfortunately, current simulations are often poorly documented, their similarity to real data is not demonstrated, or reproducible code is not available. Here, we present the Splatter Bioconductor package for simple, reproducible, and well-documented simulation of scRNA-seq data. Splatter provides an interface to multiple simulation methods including Splat, our own simulation, based on a gamma-Poisson distribution. Splat can simulate single populations of cells, populations with multiple cell types, or differentiation paths.


Subject(s)
Computer Simulation , Sequence Analysis, RNA , Single-Cell Analysis/methods , Software , Animals , Cluster Analysis , Datasets as Topic , Humans , Models, Genetic , Reproducibility of Results
19.
F1000Res ; 6: 595, 2017.
Article in English | MEDLINE | ID: mdl-28529717

ABSTRACT

Background: Single cell RNA sequencing (scRNA-seq) has rapidly gained popularity for profiling transcriptomes of hundreds to thousands of single cells. This technology has led to the discovery of novel cell types and revealed insights into the development of complex tissues. However, many technical challenges need to be overcome during data generation. Due to minute amounts of starting material, samples undergo extensive amplification, increasing technical variability. A solution for mitigating amplification biases is to include unique molecular identifiers (UMIs), which tag individual molecules. Transcript abundances are then estimated from the number of unique UMIs aligning to a specific gene, with PCR duplicates resulting in copies of the UMI not included in expression estimates. Methods: Here we investigate the effect of gene length bias in scRNA-Seq across a variety of datasets that differ in terms of capture technology, library preparation, cell types and species. Results: We find that scRNA-seq datasets that have been sequenced using a full-length transcript protocol exhibit gene length bias akin to bulk RNA-seq data. Specifically, shorter genes tend to have lower counts and a higher rate of dropout. In contrast, protocols that include UMIs do not exhibit gene length bias, with a mostly uniform rate of dropout across genes of varying length. Across four different scRNA-Seq datasets profiling mouse embryonic stem cells (mESCs), we found the subset of genes that are only detected in the UMI datasets tended to be shorter, while the subset of genes detected only in the full-length datasets tended to be longer. Conclusions: We find that the choice of scRNA-seq protocol influences the detection rate of genes, and that full-length datasets exhibit gene-length bias. In addition, despite clear differences between UMI and full-length transcript data, we illustrate that full-length and UMI data can be combined to reveal the underlying biology influencing expression of mESCs.

20.
Nat Biotechnol ; 34(11): 1168-1179, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27748754

ABSTRACT

The ability to generate hematopoietic stem cells from human pluripotent cells would enable many biomedical applications. We find that hematopoietic CD34+ cells in spin embryoid bodies derived from human embryonic stem cells (hESCs) lack HOXA expression compared with repopulation-competent human cord blood CD34+ cells, indicating incorrect mesoderm patterning. Using reporter hESC lines to track the endothelial (SOX17) to hematopoietic (RUNX1C) transition that occurs in development, we show that simultaneous modulation of WNT and ACTIVIN signaling yields CD34+ hematopoietic cells with HOXA expression that more closely resembles that of cord blood. The cultures generate a network of aorta-like SOX17+ vessels from which RUNX1C+ blood cells emerge, similar to hematopoiesis in the aorta-gonad-mesonephros (AGM). Nascent CD34+ hematopoietic cells and corresponding cells sorted from human AGM show similar expression of cell surface receptors, signaling molecules and transcription factors. Our findings provide an approach to mimic in vitro a key early stage in human hematopoiesis for the generation of AGM-derived hematopoietic lineages from hESCs.


Subject(s)
Embryonic Stem Cells/cytology , Hematopoietic Stem Cells/cytology , Homeodomain Proteins/metabolism , Mesonephros/cytology , Mesonephros/embryology , Neovascularization, Physiologic/physiology , Aorta/cytology , Aorta/embryology , Aorta/growth & development , Cell Differentiation/physiology , Cells, Cultured , Embryonic Stem Cells/physiology , Gonads/cytology , Gonads/embryology , Gonads/growth & development , Hematopoietic Stem Cells/physiology , Humans , Mesonephros/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...