Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
ACS Omega ; 9(14): 16311-16321, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38617639

ABSTRACT

Alzheimer's disease (AD) is the most common type of dementia, affecting over 50 million people worldwide. Currently, most approved medications for AD inhibit the activity of acetylcholinesterase (AChE), but these treatments often come with harmful side effects. There is growing interest in the use of natural compounds for disease prevention, alleviation, and treatment. This trend is driven by the anticipation that these substances may incur fewer side effects than existing medications. This research presents a computational approach combining machine learning with structural modeling to discover compounds from medicinal mushrooms with a high potential to inhibit the activity of AChE. First, we developed a deep neural network capable of rapidly screening a vast number of compounds to indicate their potential to inhibit AChE activity. Subsequently, we applied deep learning models to screen the compounds in the BACMUSHBASE database, which catalogs the bioactive compounds from cultivated and wild mushroom varieties local to Thailand, resulting in the identification of five promising compounds. Next, the five identified compounds underwent molecular docking techniques to calculate the binding energy between the compounds and AChE. This allowed us to refine the selection to two compounds, erinacerin A and hericenone B. Further analysis of the binding energy patterns between these compounds and the target protein revealed that both compounds displayed binding energy profiles similar to the combined characteristics of donepezil and galanthamine, the prescription drugs for AD. We propose that these two compounds, derived from Hericium erinaceus (also known as lion's mane mushroom), are suitable candidates for further research and development into symptom-alleviating AD medications.

2.
Prep Biochem Biotechnol ; 52(5): 508-513, 2022.
Article in English | MEDLINE | ID: mdl-34455937

ABSTRACT

Removal of xylan in plant biomass is believed to increase cellulose hydrolysis by uncovering cellulose surfaces for cellulase adsorption and, in turn, catalysis reaction. Herein, we describe an eco-friendly method by culturing a xylanolytic Bacillus firmus K-1 on rice straw to remove xylan. The bacterium was grown on 2.5% (w/v) rice straw with different biomass particle sizes for two days at 37 °C. We found that the particle sizes ranged from <1 to 5 mm gave a similar xylan removal degree (about 21%). Besides, the porosity and disintegration of the rice straw fibers were observed at the molecular level. The digestibility of pretreated rice straw was tested with different commercial cellulase cocktails. We found that the pretreated rice straw was more susceptible to enzymatic hydrolysis, giving 30-70% glucan conversion than the untreated one. The degree of cellulose hydrolysis depended strongly on the kinds of enzyme and their formulations. HighlightCulturing B. firmus K-1 on rice straw yielded about 21% removal of xylan.Particle sizes (of 1-5 mm) had negligible effects on xylan removal efficiency.The degree of glucan conversion in pretreated biomass relied on enzyme formulation.


Subject(s)
Bacillus firmus , Cellulase , Oryza , Cellulose , Hydrolysis , Oryza/microbiology , Xylans
3.
Appl Environ Microbiol ; 87(24): e0173021, 2021 11 24.
Article in English | MEDLINE | ID: mdl-34613758

ABSTRACT

PcAxy43B is a modular protein comprising a catalytic domain of glycoside hydrolase family 43 (GH43), a family 6 carbohydrate-binding module (CBM6), and a family 36 carbohydrate-binding module (CBM36) and found to be a novel multifunctional xylanolytic enzyme from Paenibacillus curdlanolyticus B-6. This enzyme exhibited α-l-arabinofuranosidase, endoxylanase, and ß-d-xylosidase activities. The α-l-arabinofuranosidase activity of PcAxy43B revealed a new property of GH43, via the release of both long-chain cereal arabinoxylan and short-chain arabinoxylooligosaccharide (AXOS), as well as release from both the C(O)2 and C(O)3 positions of AXOS, which is different from what has been seen for other arabinofuranosidases. PcAxy43B liberated a series of xylooligosaccharides (XOSs) from birchwood xylan and xylohexaose, indicating that PcAxy43B exhibited endoxylanase activity. PcAxy43B produced xylose from xylobiose and reacted with p-nitrophenyl-ß-d-xylopyranoside as a result of ß-xylosidase activity. PcAxy43B effectively released arabinose together with XOSs and xylose from the highly arabinosyl-substituted rye arabinoxylan. Moreover, PcAxy43B showed significant synergistic action with the trifunctional endoxylanase/ß-xylosidase/α-l-arabinofuranosidase PcAxy43A and the endoxylanase Xyn10C from strain B-6, in which almost all products produced from rye arabinoxylan by these combined enzymes were arabinose and xylose. In addition, the presence of CBM36 was found to be necessary for the endoxylanase property of PcAxy43B. PcAxy43B is capable of hydrolyzing untreated cereal biomass, corn hull, and rice straw into XOSs and xylose. Hence, PcAxy43B, a significant accessory multifunctional xylanolytic enzyme, is a potential candidate for application in the saccharification of cereal biomass. IMPORTANCE Enzymatic saccharification of cereal biomass is a strategy for the production of fermented sugars from low-price raw materials. In the present study, PcAxy43B from P. curdlanolyticus B-6 was found to be a novel multifunctional α-l-arabinofuranosidase/endoxylanase/ß-d-xylosidase enzyme of glycoside hydrolase family 43. It is effective in releasing arabinose, xylose, and XOSs from the highly arabinosyl-substituted rye arabinoxylan, which is usually resistant to hydrolysis by xylanolytic enzymes. Moreover, almost all products produced from rye arabinoxylan by the combination of PcAxy43B with the trifunctional xylanolytic enzyme PcAxy43A and the endoxylanase Xyn10C from strain B-6 were arabinose and xylose, which can be used to produce several value-added products. In addition, PcAxy43B is capable of hydrolyzing untreated cereal biomass into XOSs and xylose. Thus, PcAxy43B is an important multifunctional xylanolytic enzyme with high potential in biotechnology.


Subject(s)
Arabinose/metabolism , Endo-1,4-beta Xylanases , Paenibacillus/enzymology , Xylans , Xylose/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Edible Grain , Endo-1,4-beta Xylanases/genetics , Endo-1,4-beta Xylanases/metabolism , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Multifunctional Enzymes/genetics , Multifunctional Enzymes/metabolism , Xylans/metabolism , Xylosidases
4.
Bioengineered ; 12(1): 5110-5124, 2021 12.
Article in English | MEDLINE | ID: mdl-34369275

ABSTRACT

Tracking enzyme, substrate, and surfactant interactions to reach maximum reducing sugar production during enzymatic hydrolysis of plant biomass may provide a better understanding of factors that limit the lignocellulosic material degradation in native rice straw. In this study, enzymes (Cellic Ctec2 cellulase and Cellic Htec2 xylanase) and Triton X-100 (surfactant) were used as biocatalysts for cellulose and xylan degradation and as a lignin blocking agent, respectively. The response surface model (R2 = 0.99 and R2-adj = 0.97) indicated that Cellic Ctec2 cellulase (p < 0.0001) had significant impacts on reducing sugar production, whereas Cellic Htec2 xylanase and Triton X-100 had insignificant impacts on sugar yield. Although FTIR analysis suggested binding of Triton X-100 to lignin surfaces, the morphological observation by SEM revealed similar surface features (i.e., smooth surfaces with some pores) of rice straw irrespective of Triton X-100. The reducing sugar yields from substrate hydrolysis with or without the surfactant were comparable, suggesting similar exposure of polysaccharides accessible to the enzymes. The model analysis and chemical and structural evidence suggest that there would be no positive effects on enzymatic hydrolysis by blocking lignins with Triton X-100 if high lignin coverage exists in the substrate due to the limited availability of hydrolyzable polysaccharides.


Subject(s)
Biomass , Cellulase/chemistry , Lignin/chemistry , Surface-Active Agents/chemistry , Biofuels , Cellulase/metabolism , Endo-1,4-beta Xylanases/chemistry , Endo-1,4-beta Xylanases/metabolism , Hydrolysis , Lignin/metabolism , Models, Chemical , Oryza/chemistry , Surface-Active Agents/metabolism
5.
J Microbiol Biotechnol ; 31(9): 1262-1271, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34261852

ABSTRACT

L-Malic acid (L-MA) is widely used in food and non-food products. However, few microorganisms have been able to efficiently produce L-MA from xylose derived from lignocellulosic biomass (LB). The objective of this work is to convert LB into L-MA with the concept of a bioeconomy and environmentally friendly process. The unique trifunctional xylanolytic enzyme, PcAxy43A from Paenibacillus curdlanolyticus B-6, effectively hydrolyzed xylan in untreated LB, especially corn hull to xylose, in one step. Furthermore, the newly isolated, Acetobacter tropicalis strain H1 was able to convert high concentrations of xylose derived from corn hull into L-MA as the main product, which can be easily purified. The strain H1 successfully produced a high L-MA titer of 77.09 g/l, with a yield of 0.77 g/g and a productivity of 0.64 g/l/h from the xylose derived from corn hull. The process presented in this research is an efficient, low-cost and environmentally friendly biological process for the green production of L-MA from LB.


Subject(s)
Acetobacter/metabolism , Malates/metabolism , Paenibacillus/enzymology , Xylosidases/metabolism , Zea mays/chemistry , Biomass , Biotransformation , Fermentation , Hydrolysis , Lignin/metabolism , Xylans/metabolism , Xylose/metabolism
6.
Appl Microbiol Biotechnol ; 105(11): 4589-4598, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34027563

ABSTRACT

We used agricultural residue, corn cob, with biorefinery and bioeconomy concepts. At short-time cultivation in corn cob (12 h), Bacillus firmus K-1 produced cellulase-free xylanolytic enzyme, with xylooligosaccharides (XOSs), X5 and X6, as the main products, which can be used in a variety of applications. The xylanolytic enzyme produced from B. firmus K-1 effectively degraded xylan in corn cob, which was examined by chemical composition, scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FTIR). After cultivation, the xylan contained in the corn cob residue was decreased (as biological pretreatment), causing morphological and structural changes, including creating porosity and increasing the surface area and the exposure of cellulose of pretreated corn cob. These results lead to an improvement of cellulose access by cellulases. Commercially available cellulases, Accellerase® 1500 and Cellic® CTec2, yielded significantly higher glucose concentrations from pretreated corn cob compared to untreated corn cob. After saccharification, the lignin-rich corn cob residue can be used as a raw material for other purposes. Moreover, the B. firmus cells, with a low risk to human health, can be used in some applications. This study presents an efficient method for producing high-value-added products from agricultural residue (corn cob) through biological processes which are environmentally friendly and economically viable. KEY POINTS: • High-value-added products were efficiently produced from corn cob by B. firmus K-1. • After biological pretreatment by B. firmus K-1, cellulase can better reach cellulose. • XOSs and cellulose-derived glucose were the main products from corn cob.


Subject(s)
Bacillus firmus , Cellulase , Cellulases , Humans , Hydrolysis , Zea mays
7.
Appl Microbiol Biotechnol ; 104(17): 7533-7550, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32651597

ABSTRACT

Lytic polysaccharide monooxygenases (LPMOs) play an important role in the degradation of complex polysaccharides in lignocellulosic biomass. In the present study, we characterized a modular LPMO (PcAA10A), consisting of a family 10 auxiliary activity of LPMO (AA10) catalytic domain, and non-catalytic domains including a family 5 carbohydrate-binding module, two fibronectin type-3 domains, and a family 3 carbohydrate-binding module from Paenibacillus curdlanolyticus B-6, which was expressed in a recombinant Escherichia coli. Comparison of activities between full-length PcAA10A and the catalytic domain polypeptide (PcAA10A_CD) indicates that the non-catalytic domains are important for the deconstruction of crystalline cellulose and complex polysaccharides contained in untreated lignocellulosic biomass. Interestingly, PcAA10A_CD acted not only on cellulose and chitin, but also on xylan, mannan, and xylan and cellulose contained in lignocellulosic biomass, which has not been reported for the AA10 family. Mutation of the key residues, Trp51 located at subsite - 2 and Phe171 located at subsite +2, in the substrate-binding site of PcAA10A_CD revealed that these residues are substantially involved in broad substrate specificity toward cellulose, xylan, and mannan, albeit with a low effect toward chitin. Furthermore, PcAA10A had a boosting effect on untreated corn hull degradation by P. curdlanolyticus B-6 endo-xylanase Xyn10D and Clostridium thermocellum endo-glucanase Cel9A. These results suggest that PcAA10A is a unique LPMO capable of cleaving and enhancing lignocellulosic biomass degradation, making it a good candidate for biotechnological applications. KEY POINTS: • PcAA10A is a novel modular LPMO family 10 from Paenibacillus curdlanolyticus. • PcAA10A showed broad substrate specificity on ß-1,4 glycosidic linkage substrates. • Non-catalytic domains are important for degrading complex polysaccharides. • PcAA10A is a unique LPMO capable of enhancing lignocellulosic biomass degradation.


Subject(s)
Paenibacillus , Chitin , Mixed Function Oxygenases/metabolism , Paenibacillus/genetics , Paenibacillus/metabolism , Polysaccharides , Substrate Specificity
8.
Microorganisms ; 7(9)2019 Sep 12.
Article in English | MEDLINE | ID: mdl-31547347

ABSTRACT

Rapid decomposition of plant biomass in soda lakes is associated with microbial activity of anaerobic cellulose-degrading communities. The alkaliphilic bacterium, Clostridium alkalicellulosi, is the single known isolate from a soda lake that demonstrates cellulolytic activity. This microorganism secretes cellulolytic enzymes that degrade cellulose under anaerobic and alkaliphilic conditions. A previous study indicated that the protein fraction of cellulose-grown cultures showed similarities in composition and size to known components of the archetypical cellulosome Clostridium thermocellum. Bioinformatic analysis of the C. alkalicellulosi draft genome sequence revealed 44 cohesins, organized into 22 different scaffoldins, and 142 dockerin-containing proteins. The modular organization of the scaffoldins shared similarities to those of C. thermocellum and Acetivibrio cellulolyticus, whereas some exhibited unconventional arrangements containing peptidases and oxidative enzymes. The binding interactions among cohesins and dockerins assessed by ELISA, revealed a complex network of cellulosome assemblies and suggested both cell-associated and cell-free systems. Based on these interactions, C. alkalicellulosi cellulosomal systems have the genetic potential to create elaborate complexes, which could integrate up to 105 enzymatic subunits. The alkalistable C. alkalicellulosi cellulosomal systems and their enzymes would be amenable to biotechnological processes, such as treatment of lignocellulosic biomass following prior alkaline pretreatment.

9.
Bioresour Technol ; 293: 121929, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31476565

ABSTRACT

In the present study, was investigated an environmentally friendly method for pretreating lignocellulosic rice straw (RS) by using 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) as an ionic liquid (IL) and 1-butyl-3-methylimidazolium hydrogen sulfate ([Bmim]HSO4) as an acidic-IL (Acidic-IL) under microwave irradiation (microwave-[Bmim]Cl and microwave-[Bmim]HSO4). The conversion of lignocellulosic biomass into simple sugars requires both efficient pretreatment and hydrolysis enzymes to produce biofuels and specialty chemicals. Therefore, the applied [Bmim]Cl, [Bmim]HSO4, microwave-[Bmim]Cl, and microwave-[Bmim]HSO4 to improve hydrolysis yields. Structural analyses of the pretreated solids were performed to understand the synergistic effects of [Bmim]Cl, and [Bmim]HSO4 pretreatment under microwave irradiation (microwave-[Bmim]Cl and microwave-[Bmim]HSO4) on the efficiencies of enzymatic hydrolyses. The results of a chemical composition analysis of untreated and all pretreated RS samples by using the difference pretreatment methods showed that significant lignin removal was achieved using microwave-[Bmim]Cl (57.02 ±â€¯1.24%), followed by [Bmim]Cl only (41.01 ±â€¯2.67%), microwave-[Bmim]HSO4 (20.77 ±â€¯1.79%), and [Bmim]HSO4-only (16.88 ±â€¯1.14%). The highest glucan yield and xylan conversion achieved through the enzymatic saccharification of microwave-[Bmim]Cl-regenerated cellulose was consistent with the observations obtained from a structural analysis, which indicated a more disrupted, amorphous structure, with lowered crystallinity index (CrI) and lateral order index (LOI) of cellulose polymers. Thus results demonstrated that the pretreatment of lignocellulosic biomass with [Bmim]Cl under microwave irradiation has potential as an alternative method for pretreating lignocellulosic materials.


Subject(s)
Ionic Liquids , Oryza , Biomass , Hydrolysis , Lignin , Microwaves
10.
Appl Environ Microbiol ; 83(22)2017 Nov 15.
Article in English | MEDLINE | ID: mdl-28864653

ABSTRACT

Complete utilization of carbohydrate fractions is one of the prerequisites for obtaining economically favorable lignocellulosic biomass conversion. This study shows that xylan in untreated rice straw was saccharified to xylose in one step without chemical pretreatment, yielding 58.2% of the theoretically maximum value by Paenibacillus curdlanolyticus B-6 PcAxy43A, a weak lignin-binding trifunctional xylanolytic enzyme, endoxylanase/ß-xylosidase/arabinoxylan arabinofuranohydrolase. Moreover, xylose yield from untreated rice straw was enhanced to 78.9% by adding endoxylanases PcXyn10C and PcXyn11A from the same bacterium, resulting in improvement of cellulose accessibility to cellulolytic enzyme. After autoclaving the xylanolytic enzyme-treated rice straw, it was subjected to subsequent saccharification by a combination of the Clostridium thermocellum endoglucanase CtCel9R and Thermoanaerobacter brockii ß-glucosidase TbCglT, yielding 88.5% of the maximum glucose yield, which was higher than the glucose yield obtained from ammonia-treated rice straw saccharification (59.6%). Moreover, this work presents a new environment-friendly xylanolytic enzyme pretreatment for beneficial hydrolysis of xylan in various agricultural residues, such as rice straw and corn hull. It not only could improve cellulose saccharification but also produced xylose, leading to an improvement of the overall fermentable sugar yields without chemical pretreatment.IMPORTANCE Ongoing research is focused on improving "green" pretreatment technologies in order to reduce energy demands and environmental impact and to develop an economically feasible biorefinery. The present study showed that PcAxy43A, a weak lignin-binding trifunctional xylanolytic enzyme, endoxylanase/ß-xylosidase/arabinoxylan arabinofuranohydrolase from P. curdlanolyticus B-6, was capable of conversion of xylan in lignocellulosic biomass such as untreated rice straw to xylose in one step without chemical pretreatment. It demonstrates efficient synergism with endoxylanases PcXyn10C and PcXyn11A to depolymerize xylan in untreated rice straw and enhanced the xylose production and improved cellulose hydrolysis. Therefore, it can be considered an enzymatic pretreatment. Furthermore, the studies here show that glucose yield released from steam- and xylanolytic enzyme-treated rice straw by the combination of CtCel9R and TbCglT was higher than the glucose yield obtained from ammonia-treated rice straw saccharification. This work presents a novel environment-friendly xylanolytic enzyme pretreatment not only as a green pretreatment but also as an economically feasible biorefinery method.


Subject(s)
Bacterial Proteins/chemistry , Cellulase/chemistry , Cellulose/chemistry , Endo-1,4-beta Xylanases/chemistry , Lignin/chemistry , Oryza/chemistry , Xylans/chemistry , Xylosidases/chemistry , Biocatalysis , Clostridium thermocellum/enzymology , Glucose/chemistry , Hydrolysis , Paenibacillus/enzymology , Plant Stems/chemistry , Thermoanaerobacter/enzymology
11.
Appl Microbiol Biotechnol ; 101(3): 1175-1188, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27743043

ABSTRACT

We recently discovered a novel glycoside hydrolase family 6 (GH6) cellobiohydrolase from Paenibacillus curdlanolyticus B-6 (PcCel6A), which is rarely found in bacteria. This enzyme is a true exo-type cellobiohydrolase which exhibits high substrate specificity on amorphous cellulose and low substrate specificity on crystalline cellulose, while this showed no activity on substitution substrates, carboxymethyl cellulose and xylan, distinct from all other known GH6 cellobiohydrolases. Product profiles, HPLC analysis of the hydrolysis products and a schematic drawing of the substrate-binding subsites catalysing cellooligosaccharides can explain the new mode of action of this enzyme which prefers to hydrolyse cellopentaose. PcCel6A was not inhibited by glucose or cellobiose at concentrations up to 300 and 100 mM, respectively. A good synergistic effect for glucose production was found when PcCel6A acted together with processive endoglucanase Cel9R from Clostridium thermocellum and ß-glucosidase CglT from Thermoanaerobacter brockii. These properties of PcCel6A make it a suitable candidate for industrial application in the cellulose degradation process.


Subject(s)
Cellulose 1,4-beta-Cellobiosidase/isolation & purification , Cellulose 1,4-beta-Cellobiosidase/metabolism , Cellulose/metabolism , Paenibacillus/enzymology , Bacterial Proteins/metabolism , Carboxymethylcellulose Sodium , Cellobiose/metabolism , Chromatography, High Pressure Liquid , Cloning, Molecular , Glucose/metabolism , Hydrolysis , Kinetics , Paenibacillus/genetics , Paenibacillus/metabolism , Sequence Alignment , Substrate Specificity , Xylans/metabolism
12.
Appl Environ Microbiol ; 82(23): 6942-6951, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27663030

ABSTRACT

The axy43A gene encoding the intracellular trifunctional xylanolytic enzyme from Paenibacillus curdlanolyticus B-6 was cloned and expressed in Escherichia coli Recombinant PcAxy43A consisting of a glycoside hydrolase family 43 and a family 6 carbohydrate-binding module exhibited endo-xylanase, ß-xylosidase, and arabinoxylan arabinofuranohydrolase activities. PcAxy43A hydrolyzed xylohexaose and birch wood xylan to release a series of xylooligosaccharides, indicating that PcAxy43A contained endo-xylanase activity. PcAxy43A exhibited ß-xylosidase activity toward a chromogenic substrate, p-nitrophenyl-ß-d-xylopyranoside, and xylobiose, while it preferred to hydrolyze long-chain xylooligosaccharides rather than xylobiose. In addition, surprisingly, PcAxy43A showed arabinoxylan arabinofuranohydrolase activity; that is, it released arabinose from both singly and doubly arabinosylated xylose, α-l-Araf-(1→2)-d-Xylp or α-l-Araf-(1→3)-d-Xylp and α-l-Araf-(1→2)-[α-l-Araf-(1→3)]-ß-d-Xylp Moreover, the combination of PcAxy43A and P. curdlanolyticus B-6 endo-xylanase Xyn10C greatly improved the efficiency of xylose and arabinose production from the highly substituted rye arabinoxylan, suggesting that these two enzymes function synergistically to depolymerize arabinoxylan. Therefore, PcAxy43A has the potential for the saccharification of arabinoxylan into simple sugars for many applications. IMPORTANCE In this study, the glycoside hydrolase 43 (GH43) intracellular multifunctional endo-xylanase, ß-xylosidase, and arabinoxylan arabinofuranohydrolase (AXH) from P. curdlanolyticus B-6 were characterized. Interestingly, PcAxy43A AXH showed a new property that acted on both the C(O)-2 and C(O)-3 positions of xylose residues doubly substituted with arabinosyl, which usually obstruct the action of xylanolytic enzymes. Furthermore, the studies here show interesting properties for the processing of xylans from cereal grains, particularly rye arabinoxylan, and show a novel relationship between PcAxy43A and endo-xylanase Xyn10C from strain B-6, providing novel metabolic potential for processing arabinoxylans into xylose and arabinose.

13.
Bioresour Technol ; 218: 247-56, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27371797

ABSTRACT

Napier grass is a promising energy crop in the tropical region. Feasible alkaline pretreatment technologies, including NaOH, Ca(OH)2, NH3, and alkaline H2O2 (aH2O2), were used to delignify lignocellulose with the aim of improving glucose recovery from Napier grass stem cellulose via enzymatic saccharification. The influences of the pretreatments on structural alterations were examined using SEM, FTIR, XRD, and TGA, and the relationships between these changes and the enzymatic digestibility of cellulose were addressed. The extensive removal of lignin (84%) in NaOH-pretreated fibre agreed well with the high glucan conversion rate (94%) by enzymatic hydrolysis, while the conversion rates for fibre pretreated with Ca(OH)2, NH3, and aH2O2 approached 60%, 51%, and 42%, respectively. The substantial solubilisation of lignin created porosity, allowing increased cellulose accessibility to cellulases in NaOH-pretreated fibre. In contrast, high lignin content, lignin redeposition on the surface, and residual internal lignin and hemicellulose impeded enzymatic performance in Ca(OH)2-, NH3-, and aH2O2-pretreated fibres, respectively.


Subject(s)
Alkalies/chemistry , Pennisetum/chemistry , Renewable Energy , Ammonium Compounds/chemistry , Calcium Hydroxide/chemistry , Cellulases/chemistry , Cellulose/chemistry , Hydrogen Peroxide/chemistry , Hydrolysis , Lignin/chemistry , Pennisetum/ultrastructure , Plant Stems/chemistry , Plant Stems/ultrastructure , Polysaccharides/chemistry , Sodium Hydroxide/chemistry
14.
Folia Microbiol (Praha) ; 58(2): 163-76, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23011949

ABSTRACT

Cellulase (CEL) presently constitutes a major group of industrial enzyme based on its diverse ranges of utilization. Apart from such current and well-established applications-as in cotton processing, paper recycling, detergent formulation, juice extraction, and animal feed additives-their uses in agricultural biotechnology and bioenergy have been exploited. Supplementation of CELs to accelerate decomposition of plant residues in soil results in improved soil fertility. So far, applying CELs/antagonistic cellulolytic fungi to crops has shown to promote plant growth performance, including enhanced seed germination and protective effects. Their actions are believed mainly to trigger plant defense mechanisms and/or to act as biocontrol agents that mediate disease suppression. However, the exact interaction between the enzymes/fungi and plants has not been clearly elucidated. Under mild conditions, removal of plant cell wall polysaccharides by CELs for protoplast preparation results in reduced protoplast damage and increased viability and yields. CELs have recently shown great potential in enzyme aid extraction of bioactive compounds from plant materials before selective extraction through enhancing release of target molecules, especially those associated with the wall matrix. To date, attempts have been made to formulate CEL preparation for cellulosic-based bioethanol production. The high cost of CELs has created a bottleneck, resulting in an uneconomic production process. The utilization of low-cost carbohydrates, strain improvement, and gene manipulations has been alternatively aimed at reducing the cost of CEL production. In this review, we focus on and discuss current knowledge of CELs and their applications in agriculture, biotechnology, and bioenergy.


Subject(s)
Agriculture/methods , Bioelectric Energy Sources , Biotechnology/methods , Cellulases/metabolism , Agriculture/trends , Biotechnology/trends
15.
J Microbiol Biotechnol ; 20(5): 893-903, 2010 May.
Article in English | MEDLINE | ID: mdl-20519913

ABSTRACT

A cellulolytic and xylanolytic enzyme complex-producing alkalothermoanaerobacterium strain, Tepidimicrobium xylanilyticum BT14 is described. The cell was Gram-positive, rod-shaped and endospore-forming. Based on 16S rRNA gene analysis and various lines of biochemical and physiological properties, the strain BT14 was a new member of the genus Tepidimicrobium. The strain BT14 cells had ability to bind to Avicel, xylan and corn hull. The pH and temperature optima for growth were 9.0 and 60 degrees C, respectively. The strain BT14 was able to use a variety of carbon sources. When the bacterium was grown on corn hulls under an anaerobic condition, a cellulolytic and xylanolytic enzyme complex was produced. Crude enzyme containing cellulase and xylanase of the strain BT14 was active in broad ranges of pH and temperature. The optimum conditions for cellulase and xylanase activities were pH 8.0 and 9.0 at 60 degrees C, respectively. The crude enzyme had ability to bind to Avicel and xylan. The analysis of native-PAGE and native-zymograms indicated the cellulose-binding protein showing both cellulase and xylanase activities while SDS-PAGE zymograms showed 4 bands of cellulases and 5 bands of xylanases. Evidence of cohesin-like amino acid sequence seemed to indicate that the protein complex shared direct relationship to the cellulosome of Clostridium thermocellum. The crude enzyme from the strain BT14 showed effective degradation of plant biomass. When grown on corn hulls at pH 9.0 and 60 degrees C under anaerobic conditions, the strain BT14 produced ethanol and acetate as the main fermentation products.


Subject(s)
Bacterial Proteins/metabolism , Cellulase/metabolism , Endo-1,4-beta Xylanases/metabolism , Gram-Positive Bacteria/enzymology , Multienzyme Complexes/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Cellulase/chemistry , Cellulase/genetics , Cellulose/metabolism , Endo-1,4-beta Xylanases/chemistry , Endo-1,4-beta Xylanases/genetics , Gram-Positive Bacteria/chemistry , Gram-Positive Bacteria/classification , Gram-Positive Bacteria/genetics , Molecular Sequence Data , Multienzyme Complexes/chemistry , Multienzyme Complexes/genetics , Phylogeny , Xylans/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...