Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Viruses ; 13(4)2021 03 24.
Article in English | MEDLINE | ID: mdl-33804837

ABSTRACT

Redondoviridae is a recently discovered DNA virus family consisting of two species, vientovirus and brisavirus. Here we used PCR amplification and sequencing to characterize redondoviruses in nasal/throat swabs collected longitudinally from a cohort of 58 individuals working with animals in Vietnam. We additionally analyzed samples from animals to which redondovirus DNA-positive participants were exposed. Redondoviruses were detected in approximately 60% of study participants, including 33% (30/91) of samples collected during episodes of acute respiratory disease and in 50% (29/58) of baseline samples (with no respiratory symptoms). Vientovirus (73%; 24/33) was detected more frequently in samples than brisaviruses (27%; 9/33). In the 23 participants with at least 2 redondovirus-positive samples among their longitudinal samples, 10 (43.5%) had identical redondovirus replication-gene sequences detected (sampling duration: 35-132 days). We found no identical redondovirus replication genes in samples from different participants, and no redondoviruses were detected in 53 pooled nasal/throat swabs collected from domestic animals. Phylogenetic analysis described no large-scale geographical clustering between viruses from Vietnam, the US, Spain, and China, indicating that redondoviruses are highly genetically diverse and have a wide geographical distribution. Collectively, our study provides novel insights into the Redondoviridae family in humans, describing a high prevalence, potentially associated with chronic shedding in the respiratory tract with lack of evidence of zoonotic transmission from close animal contacts. The tropism and potential pathogenicity of this viral family remain to be determined.


Subject(s)
DNA Viruses/genetics , DNA Viruses/physiology , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Viral Zoonoses/epidemiology , Virus Shedding , Adolescent , Adult , Aged , Animals , Child , Cohort Studies , DNA Viruses/classification , Farmers/statistics & numerical data , Female , Humans , Longitudinal Studies , Male , Middle Aged , Nose/virology , Pharynx/virology , Phylogeny , Prevalence , Respiratory Tract Infections/transmission , Sequence Analysis, DNA , Vietnam/epidemiology , Viral Zoonoses/transmission , Young Adult
2.
Emerg Infect Dis ; 27(1): 205-213, 2021 01.
Article in English | MEDLINE | ID: mdl-33350920

ABSTRACT

Central nervous system (CNS) infection is a serious neurologic condition, although the etiology remains unknown in >50% of patients. We used metagenomic next-generation sequencing to detect viruses in 204 cerebrospinal fluid (CSF) samples from patients with acute CNS infection who were enrolled from Vietnam hospitals during 2012-2016. We detected 8 viral species in 107/204 (52.4%) of CSF samples. After virus-specific PCR confirmation, the detection rate was lowered to 30/204 (14.7%). Enteroviruses were the most common viruses detected (n = 23), followed by hepatitis B virus (3), HIV (2), molluscum contagiosum virus (1), and gemycircularvirus (1). Analysis of enterovirus sequences revealed the predominance of echovirus 30 (9). Phylogenetically, the echovirus 30 strains belonged to genogroup V and VIIb. Our results expanded knowledge about the clinical burden of enterovirus in Vietnam and underscore the challenges of identifying a plausible viral pathogen in CSF of patients with CNS infections.


Subject(s)
Central Nervous System Infections , Enterovirus Infections , Enterovirus , Central Nervous System Infections/diagnosis , Central Nervous System Infections/epidemiology , Cerebrospinal Fluid , Enterovirus/genetics , Humans , Metagenomics , Vietnam/epidemiology
3.
Clin Infect Dis ; 72(9): e334-e342, 2021 05 04.
Article in English | MEDLINE | ID: mdl-32738143

ABSTRACT

BACKGROUND: One hundred days after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported in Vietnam on 23 January, 270 cases were confirmed, with no deaths. We describe the control measures used by the government and their relationship with imported and domestically acquired case numbers, with the aim of identifying the measures associated with successful SARS-CoV-2 control. METHODS: Clinical and demographic data on the first 270 SARS-CoV-2 infected cases and the timing and nature of government control measures, including numbers of tests and quarantined individuals, were analyzed. Apple and Google mobility data provided proxies for population movement. Serial intervals were calculated from 33 infector-infectee pairs and used to estimate the proportion of presymptomatic transmission events and time-varying reproduction numbers. RESULTS: A national lockdown was implemented between 1 and 22 April. Around 200 000 people were quarantined and 266 122 reverse transcription polymerase chain reaction (RT-PCR) tests conducted. Population mobility decreased progressively before lockdown. In total, 60% (163/270) of cases were imported; 43% (89/208) of resolved infections remained asymptomatic for the duration of infection. The serial interval was 3.24 days, and 27.5% (95% confidence interval [CI], 15.7%-40.0%) of transmissions occurred presymptomatically. Limited transmission amounted to a maximum reproduction number of 1.15 (95% CI, .·37-2.·36). No community transmission has been detected since 15 April. CONCLUSIONS: Vietnam has controlled SARS-CoV-2 spread through the early introduction of mass communication, meticulous contact tracing with strict quarantine, and international travel restrictions. The value of these interventions is supported by the high proportion of asymptomatic and imported cases, and evidence for substantial presymptomatic transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , Communicable Disease Control , Humans , Quarantine , Vietnam/epidemiology
4.
Sci Data ; 6(1): 202, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31615980

ABSTRACT

There is still limited information on the diversity of viruses co-circulating in humans and animals. Here, we report data obtained from a large field collection of enteric samples taken from humans, pigs, rodents and other mammal hosts in Vietnam between 2012 and 2016. Each of 2100 stool or rectal swab samples was subjected to virally-enriched agnostic metagenomic sequencing; the short read sequence data are accessible from the European Nucleotide Archive (ENA). We link the sequence data to metadata on host type and demography and geographic location, distinguishing hospital patients, members of a cohort identified as a high risk of zoonotic infections (e.g. abattoir workers, rat traders) and animals. These data are suitable for further studies of virus diversity and virus discovery in humans and animals from Vietnam and to identify viruses found in multiple hosts that are potentially zoonotic.


Subject(s)
Mammals/virology , Metagenome , Viruses/classification , Animals , Humans , Metadata , Rodentia , Swine , Vietnam
6.
Wellcome Open Res ; 2: 41, 2017.
Article in English | MEDLINE | ID: mdl-28852711

ABSTRACT

BACKGROUND: Since 1962, enterovirus D68 (EV-D68) has been implicated in multiple outbreaks and sporadic cases of respiratory infection worldwide, but especially in the USA and Europe with an increasing frequency between 2010 and 2014. We describe the detection, associated clinical features and molecular characterization of EV-D68 in central and southern Viet Nam between 2009 and 2015. METHODS: Enterovirus/rhinovirus PCR positive respiratory or CSF samples taken from children and adults with respiratory/central nervous system infections in Viet Nam were tested by an EV-D68 specific PCR. The included samples were derived from 3 different observational studies conducted at referral hospitals across central and southern Viet Nam between 2009 and 2015. Whole-genome sequencing was carried out using a MiSeq based approach. Phylogenetic reconstruction and estimation of evolutionary rate and recombination were carried out in BEAST and Recombination Detection Program, respectively. RESULTS: EV-D68 was detected in 21/625 (3.4%) enterovirus/rhinovirus PCR positive respiratory samples but in none of the 15 CSF. All the EV-D68 patients were young children (age range: 11.8 - 24.5 months) and had moderate respiratory infections. Phylogenetic analysis suggested that the Vietnamese sequences clustered with those from Asian countries, of which 9 fell in the B1 clade, and the remaining sequence was identified within the A2 clade. One intra sub-clade recombination event was detected, representing the second reported recombination within EV-D68. The evolutionary rate of EV-D68 was estimated to be 5.12E -3 substitutions/site/year. Phylogenetic analysis indicated that the virus was imported into Viet Nam in 2008. CONCLUSIONS: We have demonstrated for the first time EV-D68 has been circulating at low levels in Viet Nam since 2008, associated with moderate acute respiratory infection in children. EV-D68 in Viet Nam is most closely related to Asian viruses, and clusters separately from recent US and European viruses that were suggested to be associated with acute flaccid paralysis.

7.
BMC Genomics ; 18(1): 324, 2017 04 24.
Article in English | MEDLINE | ID: mdl-28438140

ABSTRACT

BACKGROUND: Genomic characterization of rotavirus (RoV) has not been adopted at large-scale due to the complexity of obtaining sequences for all 11 segments, particularly when feces are used as starting material. METHODS: To overcome these limitations, we developed a novel RoV capture and genome sequencing method combining commercial enzyme immunoassay plates and a set of routinely used reagents. RESULTS: Our approach had a 100% success rate, producing >90% genome coverage for diverse RoV present in fecal samples (Ct < 30). CONCLUSIONS: This method provides a novel, reproducible and comparatively simple approach for genomic RoV characterization and could be scaled-up for use in global RoV surveillance systems. TRIAL REGISTRATION (PROSPECTIVELY REGISTERED): Current Controlled Trials ISRCTN88101063 . Date of registration: 14/06/2012.


Subject(s)
Feces/virology , Genomics/methods , Genotype , Reassortant Viruses/genetics , Rotavirus/genetics , Sequence Analysis, RNA/methods , DNA, Complementary/genetics , Genome, Viral/genetics , Humans , Phylogeny , Reassortant Viruses/physiology , Rotavirus/physiology , Viral Load
8.
J Clin Microbiol ; 54(4): 1094-100, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26865681

ABSTRACT

Diarrheal disease is a complex syndrome that remains a leading cause of global childhood morbidity and mortality. The diagnosis of enteric pathogens in a timely and precise manner is important for making treatment decisions and informing public health policy, but accurate diagnosis is a major challenge in industrializing countries. Multiplex molecular diagnostic techniques may represent a significant improvement over classical approaches. We evaluated the Luminex xTAG gastrointestinal pathogen panel (GPP) assay for the detection of common enteric bacterial and viral pathogens in Vietnam. Microbiological culture and real-time PCR were used as gold standards. The tests were performed on 479 stool samples collected from people admitted to the hospital for diarrheal disease throughout Vietnam. Sensitivity and specificity were calculated for the xTAG GPP for the seven principal diarrheal etiologies. The sensitivity and specificity for the xTAG GPP were >88% for Shigellaspp.,Campylobacterspp., rotavirus, norovirus genotype 1/2 (GI/GII), and adenovirus compared to those of microbiological culture and/or real-time PCR. However, the specificity was low (∼60%) for Salmonella species. Additionally, a number of important pathogens that are not identified in routine hospital procedures in this setting, such as Cryptosporidiumspp. and Clostridium difficile, were detected with the GPP. The use of the Luminex xTAG GPP for the detection of enteric pathogens in settings, like Vietnam, would dramatically improve the diagnostic accuracy and capacity of hospital laboratories, allowing for timely and appropriate therapy decisions and a wider understanding of the epidemiology of pathogens associated with severe diarrheal disease in low-resource settings.


Subject(s)
Bacteria/isolation & purification , Diarrhea/diagnosis , Feces/microbiology , Feces/virology , Immunoassay/methods , Viruses/isolation & purification , Adolescent , Adult , Aged , Aged, 80 and over , Bacteria/classification , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Sensitivity and Specificity , Vietnam , Viruses/classification , Young Adult
9.
Ecohealth ; 12(4): 726-35, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26403795

ABSTRACT

The effect of newly emerging or re-emerging infectious diseases of zoonotic origin in human populations can be potentially catastrophic, and large-scale investigations of such diseases are highly challenging. The monitoring of emergence events is subject to ascertainment bias, whether at the level of species discovery, emerging disease events, or disease outbreaks in human populations. Disease surveillance is generally performed post hoc, driven by a response to recent events and by the availability of detection and identification technologies. Additionally, the inventory of pathogens that exist in mammalian and other reservoirs is incomplete, and identifying those with the potential to cause disease in humans is rarely possible in advance. A major step in understanding the burden and diversity of zoonotic infections, the local behavioral and demographic risks of infection, and the risk of emergence of these pathogens in human populations is to establish surveillance networks in populations that maintain regular contact with diverse animal populations, and to simultaneously characterize pathogen diversity in human and animal populations. Vietnam has been an epicenter of disease emergence over the last decade, and practices at the human/animal interface may facilitate the likelihood of spillover of zoonotic pathogens into humans. To tackle the scientific issues surrounding the origins and emergence of zoonotic infections in Vietnam, we have established The Vietnam Initiative on Zoonotic Infections (VIZIONS). This countrywide project, in which several international institutions collaborate with Vietnamese organizations, is combining clinical data, epidemiology, high-throughput sequencing, and social sciences to address relevant one-health questions. Here, we describe the primary aims of the project, the infrastructure established to address our scientific questions, and the current status of the project. Our principal objective is to develop an integrated approach to the surveillance of pathogens circulating in both human and animal populations and assess how frequently they are exchanged. This infrastructure will facilitate systematic investigations of pathogen ecology and evolution, enhance understanding of viral cross-species transmission events, and identify relevant risk factors and drivers of zoonotic disease emergence.


Subject(s)
Animals, Wild , Communicable Diseases, Emerging/prevention & control , Communicable Diseases, Emerging/transmission , Disease Outbreaks/prevention & control , Zoonoses/prevention & control , Zoonoses/transmission , Animals , Communicable Diseases, Emerging/epidemiology , Disease Reservoirs , Humans , International Cooperation , United States , Vietnam/epidemiology , Zoonoses/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...