Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Organometallics ; 42(13): 1649-1657, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37448537

ABSTRACT

Two compounds containing a Sn(II) atom supported by a bidentate biscarborane ligand have been synthesized via salt metathesis. The synthetic procedures for (bc)Sn·THF (bc = 1,1' (ortho-carborane) (1) and K2[(bc)Sn]2 (2) involved the reaction of K2[bc] with SnCl2 in either a THF solution (1) or in a benzene/dichloromethane solvent mixture (2). Using the same solvent conditions as those used for 2 but using a shorter reaction time gave a dibiscarboranyl ethene (3). The products were characterized by 1H, 13C, 11B, 119Sn NMR, UV-vis, and IR spectroscopy, and by X-ray crystallography. The diffraction data for 1 and 2 show that the Sn atom has a trigonal pyramid environment and is constrained by the bc ligand in a planar five-membered C4Sn heterocycle. The 119Sn NMR spectrum of 1 displays a triplet of triplets pattern signal, which is unexpected given the absence of a Sn-H signal in the 1H NMR, IR spectrum, and X-ray crystallographic data. However, a comparison with other organotin compounds featuring a Sn atom bonded to carboranes reveal similar multiplets in their 119Sn NMR spectra, likely arising from long-range nuclear spin-spin coupling between the carboranyl 11B and 119Sn nuclei. Compound 3 displays structural and spectroscopic characteristics typical of conjugated alkenes.

3.
Pure Appl Chem ; 93(2): 207-221, 2021.
Article in English | MEDLINE | ID: mdl-33935303

ABSTRACT

This work describes select narratives pertaining to undergraduate teaching and mentorship at UCLA Chemistry and Biochemistry by Alex Spokoyny and his junior colleagues. Specifically, we discuss how individual undergraduate researchers contributed and jump-started multiple research themes since the conception of our research laboratory. This work also describes several recent innovations in the inorganic and general chemistry courses taught by Spokoyny at UCLA with a focus of nurturing appreciation for research and creative process in sciences including the use of social media platforms.

4.
J Am Chem Soc ; 142(5): 2233-2237, 2020 Feb 05.
Article in English | MEDLINE | ID: mdl-31951405

ABSTRACT

The reaction of the molybdenum-molybdenum triple-bonded dimer (CO)2CpMo≡MoCp(CO)2 (Cp = η5-C5H5) with the triple-bonded dimetallynes AriPr4MMAriPr4 or AriPr6MMAriPr6 (AriPr4 = C6H3-2,6-(C6H3-2,6-Pri2)2, AriPr6 = C6H3-2,6-(C6H2-2,4,6-Pri3)2; M = Ge, Sn, or Pb) under mild conditions (≤80 °C, 1 bar) afforded AriPr4M≡MoCp(CO)2 or AriPr6M≡MoCp(CO)2 in moderate to excellent yields. The reactions represent the first isolable products from a metathesis of two metal-metal triple bonds. Analogous exchange reactions with the single-bonded (CO)3CpMo-MoCp(CO)3 gave ArM̈-MoCp(CO)3 (Ar = AriPr4 or AriPr6; M = Sn or Pb). The products were characterized by NMR (1H, 13C, 119Sn, or 207Pb), electronic, and IR spectroscopy and by X-ray crystallography.

5.
Chem Sci ; 7(8): 5132-5138, 2016 Aug 01.
Article in English | MEDLINE | ID: mdl-28191302

ABSTRACT

We report the synthesis and characterization of a series of d8 metal complexes featuring robust and photophysically innocent strong-field chelating 1,1'-bis(o-carborane) (bc) ligand frameworks. A combination of UV-Vis spectroscopy, single crystal X-ray structural analysis, and DFT calculations of these species suggest that the dianionic bc ligand does not contribute to any visible metal-to-ligand charge transfer (MLCT) transitions, yet it provides a strong ligand field in these complexes. Furthermore, a bc-based Pt(II) complex containing a 4,4'-di-tert-butyl-2,2'-bipyridine ligand (dtb-bpy) has been prepared and was found to display blue phosphorescent emission dominated by MLCT from the Pt(II) center to the dtb-bpy ligand. Importantly, the bulky three-dimensional nature of the bc ligand precludes intermolecular Pt(II)⋯Pt(II) interactions in the solid state where the resulting compounds retain their emission properties. This study opens a potentially new avenue for designing organic light-emitting diode (OLED) materials with tunable properties featuring photophysically innocent boron-rich cluster ligands.

SELECTION OF CITATIONS
SEARCH DETAIL
...