Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Allergy ; 76(6): 1776-1788, 2021 06.
Article in English | MEDLINE | ID: mdl-33090507

ABSTRACT

BACKGROUND: Fatty acid-binding protein 3 (FABP3) is a cytosolic carrier protein of polyunsaturated fatty acids (PUFAs) and regulates cellular metabolism. However, the physiological functions of FABP3 in immune cells and how FABP3 regulates inflammatory responses remain unclear. METHODS: Contact hypersensitivity (CHS) induced by 2,4-dinitrofluorobenzene (DNFB) and fluorescein isothiocyanate was applied to the skin wild-type and Fabp3-/- mice. Skin inflammation was assessed using FACS, histological, and qPCR analyses. The development of γ/δ T cells was evaluated by a co-culture system with OP9/Dll1 cells in the presence or absence of transgene of FABP3. RESULTS: Fabp3-deficient mice exhibit a more severe phenotype of contact hypersensitivity (CHS) accompanied by infiltration of IL-17-producing Vγ4+ γ/δ T cells that critically control skin inflammation. In Fabp3-/- mice, we found a larger proportion of Vγ4+ γ/δ T cells in the skin, even though the percentage of total γ/δ T cells did not change at steady state. Similarly, juvenile Fabp3-/- mice also contained a higher amount of Vγ4+ γ/δ T cells not only in the skin but in the thymus when compared with wild-type mice. Furthermore, thymic double-negative (DN) cells expressed FABP3, and FABP3 negatively regulates the development of Vγ4+ γ/δ T cells in the thymus. CONCLUSIONS: These findings suggest that FABP3 functions as a negative regulator of skin inflammation through limiting pathogenic Vγ4+ γ/δ T-cell generation in the thymus.


Subject(s)
Dermatitis, Contact , T-Lymphocytes , Animals , Dermatitis, Contact/genetics , Disease Models, Animal , Fatty Acid Binding Protein 3 , Fatty Acid-Binding Proteins/genetics , Mice , Mice, Inbred C57BL , Receptors, Antigen, T-Cell, gamma-delta/metabolism , T-Lymphocytes/metabolism
2.
FEBS J ; 288(4): 1130-1141, 2021 02.
Article in English | MEDLINE | ID: mdl-32578350

ABSTRACT

Plasma cells (PCs), which aim to protect host health, produce various subsets of immunoglobulin (Ig) in response to extracellular pathogens. Blimp-1 (encoded by Prdm1)-a protein that is highly expressed by PCs-is important for PC functions, including the generation of Igs. Fatty acid-binding protein 3 (FABP3) is a carrier protein of polyunsaturated fatty acids (PUFAs) and participates in multiple cellular functions. Although the functions of FABP3 in neurons and cardiac myocytes are well-noted, their roles in immune cells remain to be fully elucidated. In this study, we demonstrate that FABP3 is expressed in activated B cells and that FABP3 promotes PC development and IgM secretion. Moreover, we provide the first evidence that FABP3 is necessary for Blimp-1 expression, by regulating the histone modification of its promoter region. Taken together, our findings reveal that FABP3 acts as a positive regulator of B-cell activation by controlling histone acetylation of the Blimp-1 gene, thereby playing a role in host defense against pathogens.


Subject(s)
Cell Differentiation/genetics , Fatty Acid Binding Protein 3/genetics , Immunoglobulin M/metabolism , Plasma Cells/metabolism , Acetylation , Animals , Cells, Cultured , Fatty Acid Binding Protein 3/metabolism , Gene Expression Regulation , Histones/metabolism , Immunohistochemistry , Mice, Inbred C57BL , Mice, Knockout , Positive Regulatory Domain I-Binding Factor 1/genetics , Positive Regulatory Domain I-Binding Factor 1/metabolism , Reverse Transcriptase Polymerase Chain Reaction
3.
Sci Rep ; 10(1): 16617, 2020 10 06.
Article in English | MEDLINE | ID: mdl-33024217

ABSTRACT

Dietary obesity is regarded as a problem worldwide, and it has been revealed the strong linkage between obesity and allergic inflammation. Fatty acid-binding protein 5 (FABP5) is expressed in lung cells, such as alveolar epithelial cells (ECs) and alveolar macrophages, and plays an important role in infectious lung inflammation. However, we do not know precise mechanisms on how lipid metabolic change in the lung affects allergic lung inflammation. In this study, we showed that Fabp5-/- mice exhibited a severe symptom of allergic lung inflammation. We sought to examine the role of FABP5 in the allergic lung inflammation and demonstrated that the expression of FABP5 acts as a novel positive regulator of ST2 expression in alveolar ECs to generate retinoic acid (RA) and supports the synthesis of RA from type II alveolar ECs to suppress excessive activation of innate lymphoid cell (ILC) 2 during allergic lung inflammation. Furthermore, high-fat diet (HFD)-fed mice exhibit the downregulation of FABP5 and ST2 expression in the lung tissue compared with normal diet (ND)-fed mice. These phenomena might be the reason why obese people are more susceptible to allergic lung inflammation. Thus, FABP5 is potentially a therapeutic target for treating ILC2-mediated allergic lung inflammation.


Subject(s)
Asthma/genetics , Asthma/immunology , Fatty Acid-Binding Proteins/immunology , Inflammation/immunology , Lung/immunology , Lymphocytes/immunology , Neoplasm Proteins/immunology , Alveolar Epithelial Cells/metabolism , Animals , Diet, High-Fat/adverse effects , Disease Models, Animal , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism , Gene Expression , Interleukin-1 Receptor-Like 1 Protein/genetics , Interleukin-1 Receptor-Like 1 Protein/metabolism , Lipid Metabolism , Lung/metabolism , Mice, Inbred C57BL , Molecular Targeted Therapy , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Obesity/etiology , Obesity/immunology , Tretinoin/metabolism
4.
FASEB J ; 34(11): 14820-14831, 2020 11.
Article in English | MEDLINE | ID: mdl-32910505

ABSTRACT

Glucocorticoid-induced TNFR family related gene (GITR) is a member of the TNFR superfamily that is expressed on cells of the immune system. Although the protective and pathogenic roles of GITR in T cell immunity are well characterized, the role of GITR in innate immunity in the intestinal tissues has not been well clarified. In this study, using a dextran sulfate sodium (DSS)-induced colitis model in mice, we found that GITR-deficiency rendered mice more susceptible to acute intestinal inflammation and that a significantly higher number of activated natural killer (NK) cells was accumulated in the colonic lamina propria of Gitr-/- mice as compared to wild-type mice. Additionally, Rag2-/- Gitr-/- mice, which lack T cells but have NK cells, also displayed more severe colonic inflammation than Rag2-/- mice. In contrast, an anti-GITR agonistic antibody significantly alleviated colitis in Rag2-/- mice. Engagement of GITR inhibited IL-15-mediated activating signaling events in NK cells, which include cell activation and proliferation, and production of cytokines and cytotoxic granules. Taken together, our results provide the first evidence that GITR negatively controls intestinal inflammation through NK cell functions.


Subject(s)
Colitis, Ulcerative/immunology , Glucocorticoid-Induced TNFR-Related Protein/metabolism , Intestinal Mucosa/immunology , Killer Cells, Natural/immunology , Animals , Cells, Cultured , Colitis, Ulcerative/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Glucocorticoid-Induced TNFR-Related Protein/genetics , Interleukin-15/metabolism , Lymphocyte Activation , Mice , Mice, Inbred C57BL
6.
Immunohorizons ; 4(3): 129-139, 2020 03 10.
Article in English | MEDLINE | ID: mdl-32156688

ABSTRACT

TNFR-associated factor 5 (TRAF5) is a cytosolic adaptor protein and functions as an inflammatory regulator. However, the in vivo function of TRAF5 remains unclear, and how TRAF5 controls inflammatory responses in the intestine is not well understood. In this study, we found that intestinal epithelial cells from Traf5-/- mice expressed a significantly lower level of NF-κB-regulated proinflammatory genes, such as Tnf, Il6, and Cxcl1, as early as day 3 after dextran sulfate sodium (DSS) exposure when compared with wild-type mice. The intestinal barrier integrity of DSS-treated Traf5-/- mice remained intact at this early time point, and Traf5-/- mice showed decreased body weight loss and longer colon length at later time points. Surprisingly, the protein level of TRAF2, but not TRAF3, was reduced in colon tissues of Traf5-/- mice after DSS, indicating the requirement of TRAF5 for TRAF2 protein stability in the inflamed colon. Experiments with bone marrow chimeras confirmed that TRAF5 deficiency in nonhematopoietic cells caused the attenuated colitis. Our in vitro experiments demonstrated that proinflammatory cytokines significantly promoted the degradation of TRAF2 protein in Traf5-/- nonhematopoietic cells in a proteasome-dependent manner. Collectively, our data suggest a novel regulatory function of TRAF5 in supporting the proinflammatory function of TRAF2 in nonhematopoietic cells, which may be important for acute inflammatory responses in the intestine.


Subject(s)
Colitis/chemically induced , Colitis/metabolism , Dextran Sulfate/pharmacology , Epithelial Cells/metabolism , Fibroblasts/metabolism , TNF Receptor-Associated Factor 2/metabolism , TNF Receptor-Associated Factor 5/metabolism , Animals , Cells, Cultured , Colon/metabolism , Cytokines/metabolism , Disease Models, Animal , Inflammation/genetics , Inflammation/metabolism , Intestinal Mucosa/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , TNF Receptor-Associated Factor 5/genetics , Transfection
7.
Biochem Biophys Res Commun ; 521(2): 353-359, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31668809

ABSTRACT

The conventional dendritic cells (cDCs) and plasmacytoid DCs (pDCs) originate from the same common dendritic cell precursor cells in the bone marrow. The pDCs produce large amounts of type 1 interferon in response to foreign nucleic acid and crucially contribute to host defense against viral infection. Tumor necrosis factor (TNF) receptor-associated factor 5 (TRAF5) is a pivotal component of various TNF receptor signaling pathways in the immune system. Although the functions of TRAF5 in T and B lymphocytes have been well studied, its roles in pDCs remains to be fully elucidated. In this study, we show that the expression of TRAF5 supports the generation of pDCs in the bone marrow and also critically contributes to the homeostasis of the pDC subset in the periphery in a cell-intrinsic manner. Furthermore, we provide evidence that TRAF5 promotes the commitment of DC precursor cells toward pDC versus cDC subsets, which is regulated by the balance of transcription factors TCF4 and ID2. Together our findings reveal that TRAF5 acts as a positive regulator of pDC differentiation from bone marrow progenitors.


Subject(s)
Bone Marrow Cells/cytology , Dendritic Cells/cytology , Stem Cells/cytology , TNF Receptor-Associated Factor 5/physiology , Animals , Bone Marrow , Cell Differentiation , Cells, Cultured , Humans , Inhibitor of Differentiation Protein 2/physiology , Transcription Factor 4/physiology , Transcription Factors/physiology
8.
Int Immunol ; 32(4): 233-241, 2020 04 12.
Article in English | MEDLINE | ID: mdl-31819988

ABSTRACT

Group 2 innate lymphoid cells (ILC2s) play critical roles in type 2 immunity and are crucial for pathogenesis of various types of inflammatory disease. IQ motif-containing GTPase-activating protein 1 (IQGAP1) is a ubiquitously expressed scaffold protein that is involved in multiple cellular functions such as cell survival and trafficking. While the roles for IQGAP1 in T and B lymphocytes have been uncovered, the physiological significance of IQGAP1 in innate lymphocytes remains to be elucidated. In the current study, we demonstrate that using bone marrow chimeras, the deficiency of IQGAP1 caused an impaired survival of lung ILC2s in a cell-intrinsic manner and that Iqgap1-/- mice displayed decreased accumulation of ILC2s after administration of papain and thereby reduced the pathology of the disease. Moreover, Iqgap1-/- ILC2s showed a significantly enhanced apoptosis as compared to wild-type ILC2s under both steady-state and inflammatory conditions. Together these results identify for the first time that IQGAP1 is essential for homeostasis of ILC2s in the lung.


Subject(s)
Lung/immunology , Lymphocytes/immunology , ras GTPase-Activating Proteins/immunology , Animals , Homeostasis/immunology , Immunity, Innate/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , ras GTPase-Activating Proteins/deficiency
9.
J Immunol ; 203(6): 1447-1456, 2019 09 15.
Article in English | MEDLINE | ID: mdl-31420465

ABSTRACT

The physiological functions of TNF receptor-associated factor 5 (TRAF5) in the skin inflammation and wound healing process are not well characterized. We found that Traf5 -/- mice exhibited an accelerated skin wound healing as compared with wild-type counterparts. The augmented wound closure in Traf5 -/- mice was associated with a massive accumulation of plasmacytoid dendritic cells (pDCs) into skin wounds and an enhanced expression of genes related to wound repair at skin sites. In accordance with this result, adoptive transfer of Traf5 -/- pDCs, but not wild-type pDCs, into the injured skin area in wild-type recipient mice significantly promoted skin wound healing. The expression of skin-tropic chemokine receptor CXCR3 was significantly upregulated in Traf5-/- pDCs, and treatment with a CXCR3 inhibitor cancelled the promoted wound healing in Traf5-/- mice, suggesting a pivotal role of CXCR3 in pDC-dependent wound healing. Traf5 -/- pDCs displayed significantly higher expression of IFN regulatory factor 5 (IRF5), which correlated with greater induction of proinflammatory cytokine genes and CXCR3 protein after stimulation with TLR ligands. Consistently, transduction of exogeneous TRAF5 in Traf5-/- pDCs normalized the levels of abnormally elevated proinflammatory molecules, including IRF5 and CXCR3. Furthermore, knockdown of IRF5 also rescued the abnormal phenotypes of Traf5-/- pDCs. Therefore, the higher expression and induction of IRF5 in Traf5-/- pDCs causes proinflammatory and skin-tropic characteristics of the pDCs, which may accelerate skin wound healing responses. Collectively, our results uncover a novel role of TRAF5 in skin wound healing that is mediated by IRF5-dependent function of pDCs.


Subject(s)
Dendritic Cells/metabolism , Interferon Regulatory Factors/metabolism , TNF Receptor-Associated Factor 5/metabolism , Animals , Cytokines/metabolism , Inflammation/metabolism , Mice , Mice, Inbred C57BL , Receptors, CXCR3/metabolism , Signal Transduction/physiology , Skin/metabolism , Up-Regulation/physiology , Wound Healing/physiology
10.
Biochem Biophys Res Commun ; 499(3): 544-550, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29596835

ABSTRACT

Oncostatin M (OSM) is involved in pathogenesis of several human inflammatory diseases including lung inflammation and fibrosis. Although accumulating evidence indicates that OSM mediates lung inflammation, the precise mechanism for OSM on lung inflammation still remains unclear. In this study, we found that OSM receptor was abundantly expressed on endothelial and stromal/fibroblast cells in the lung of mice. In vitro stimulation with OSM upregulated vascular cell adhesion molecule-1 (VCAM-1), which promotes eosinophil infiltration in the lung tissues, on freshly-isolated lung stromal/fibroblast cells from wild-type mice. However, these cells from TNF receptor associated factor 5 (TRAF5)-deficient mice failed to show the increase in VCAM-1 expression after OSM stimulation. Furthermore, Traf5-/- mice showed markedly attenuated lung inflammation in terms of eosinophil infiltration upon intranasal administration with OSM as compared to wild-type mice. These results indicate that TRAF5 is crucially involved in OSM-mediated lung inflammation probably by inducing lung stromal/fibroblast cell activation.


Subject(s)
Oncostatin M/metabolism , Pneumonia/metabolism , Pneumonia/pathology , TNF Receptor-Associated Factor 5/metabolism , Animals , Endothelial Cells/metabolism , Endothelial Cells/pathology , Eosinophils/metabolism , Eosinophils/pathology , Fibroblasts/metabolism , Fibroblasts/pathology , Interleukin-6/metabolism , Lung/metabolism , Lung/pathology , Mice, Inbred C57BL , Stromal Cells/metabolism , Stromal Cells/pathology , Tumor Necrosis Factor-alpha/metabolism , Up-Regulation , Vascular Cell Adhesion Molecule-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...