Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Chem ; 92: 103202, 2019 11.
Article in English | MEDLINE | ID: mdl-31479984

ABSTRACT

In search for novel small molecules with antitumor cytotoxicity via activating procaspase-3, we have designed and synthesized three series of novel (E)-N'-benzylidene-4-oxoquinazolin-3(4H)-yl)acetohydrazides (5a-j, 6a-h, and 7a-h). On the phenyl ring ò the benzylidene part, three different substituents, including 2-OH-4-OCH3, 4-OCH3, and 4-N(CH3)2, were introduced, respectively. Biological evaluation showed that the acetohydrazides in series 5a-j, in which the phenyl ring of the benzylidene part was substituted by 2-OH-4-OCH3 substituent, exhibited potent cytotoxicity against three human cancer cell lines (SW620, colon; PC-3, prostate; NCI-H23, lung). Most of the compounds, in this series, especially compounds 5c, 5b and 5h, also significantly activated caspase-3 activity. Among these, compound 5c displayed 1.61-fold more potent than PAC-1 as caspase-3 activator. Cell cycle analysis showed that compounds 5b, 5c, and 5h significantly arrested the cell cycle in G1 phase. Further apoptotic studies also demonstrated compounds 5b, 5c, and 5h as strong apoptotic cell death inducers. The docking simulation studies showed that these compounds could activate procaspase via chelating Zn2+ ion bound to the allosteric site of the zymogen.


Subject(s)
Antineoplastic Agents/chemical synthesis , Caspases/metabolism , Hydrazines/chemical synthesis , Quinazolines/chemistry , Allosteric Site , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Humans , Hydrazines/pharmacology , Molecular Docking Simulation , Molecular Structure , Protein Binding , Signal Transduction , Structure-Activity Relationship
2.
J Enzyme Inhib Med Chem ; 34(1): 465-478, 2019 Dec.
Article in English | MEDLINE | ID: mdl-30734614

ABSTRACT

In our search for novel small molecules activating procaspase-3, we have designed and synthesised a series of novel acetohydrazides incorporating quinazolin-4(3H)-ones (5, 6, 7). Biological evaluation revealed eight compounds with significant cytotoxicity against three human cancer cell lines (SW620, colon cancer; PC-3, prostate cancer; NCI-H23, lung cancer). The most potent compound 5t displayed cytotoxicity up to 5-fold more potent than 5-FU. Analysis of structure-activity relationships showed that the introduction of different substituents at C-6 position on the quinazolin-4(3H)-4-one moiety, such as 6-chloro or 6-methoxy potentially increased the cytotoxicity of the compounds. In term of caspase activation activity, several compounds were found to exhibit potent effects, (e.g. compounds 7 b, 5n, and 5l). Especially, compound 7 b activated caspases activity by almost 200% in comparison to that of PAC-1. Further docking simulation also revealed that this compound potentially is a potent allosteric inhibitor of procaspase-3.


Subject(s)
Antineoplastic Agents/pharmacology , Caspases/metabolism , Hydrazines/pharmacology , Quinazolines/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Hydrazines/chemical synthesis , Hydrazines/chemistry , Molecular Docking Simulation , Molecular Structure , Quinazolines/chemical synthesis , Quinazolines/chemistry , Structure-Activity Relationship
3.
Chem Biodivers ; 15(10): e1800322, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30054973

ABSTRACT

In our search for novel small cytotoxic molecules potentially activating procaspase-3, we have designed and synthesized a series of novel N'-[(E)-arylidene]-2-(2,3-dihydro-3-oxo-4H-1,4-benzoxazin-4-yl)acetohydrazides (5, 6). Biological evaluation revealed that seven compounds, including 5h, 5j, 5k, 5l, 5n, 6a, and 6b, exhibited moderate to strong cytotoxicity against three human cancer cell lines (SW620, colon cancer; PC-3, prostate cancer; NCI-H23, lung cancer). Among these compounds, two most cytotoxic compounds (5h and 5j) displayed from 3- up to 10-fold higher potency than PAC-1 and 5-FU in three cancer cell lines tested. Three compounds 5j, 5k, and 5n were also found to display better caspases activation activity in comparison to PAC-1. Especially, compound 5k activated the level of caspases activity by 200% higher than that of PAC-1. From this study, three compounds 5j, 5k, and 5n could be considered as potential leads for further design and development of caspase activators and anticancer agents.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Caspases/metabolism , Enzyme Activators/chemistry , Enzyme Activators/pharmacology , Hydrazines/chemistry , Hydrazines/pharmacology , Antineoplastic Agents/chemical synthesis , Benzoxazines/chemical synthesis , Benzoxazines/chemistry , Benzoxazines/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Design , Enzyme Activators/chemical synthesis , Humans , Hydrazines/chemical synthesis , Neoplasms/drug therapy , Neoplasms/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...