Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 261(Pt 1): 129663, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38278396

ABSTRACT

Paenibacillus polymyxa (P. polymyxa) is a member of the genus Paenibacillus, which is a rod-shaped, spore-forming gram-positive bacterium. P. polymyxa is a source of many metabolically active substances, including polypeptides, volatile organic compounds, phytohormone, hydrolytic enzymes, exopolysaccharide (EPS), etc. Due to the wide range of compounds that it produces, P. polymyxa has been extensively studied as a plant growth promoting bacterium which provides a direct benefit to plants through the improvement of N fixation from the atmosphere and enhancement of the solubilization of phosphorus and the uptake of iron in the soil, and phytohormones production. Among the metabolites from P. polymyxa, EPS exhibits many activities, for example, antioxidant, immunomodulating, anti-tumor and many others. EPS has various applications in food, agriculture, environmental protection. Particularly, in the field of sustainable agriculture, P. polymyxa EPS can be served as a biofilm to colonize microbes, and also can act as a nutrient sink on the roots of plants in the rhizosphere. Therefore, this paper would provide a comprehensive review of the advancements of diverse aspects of EPS from P. polymyxa, including the production, extraction, structure, biosynthesis, bioactivity and applications, etc. It would provide a direction for future research on P. polymyxa EPS.


Subject(s)
Paenibacillus polymyxa , Paenibacillus , Paenibacillus polymyxa/metabolism , Paenibacillus/metabolism , Plant Growth Regulators/metabolism , Plant Development , Plants/metabolism
2.
Front Plant Sci ; 14: 1303667, 2023.
Article in English | MEDLINE | ID: mdl-38169626

ABSTRACT

Increasing biotic and abiotic stresses are seriously impeding the growth and yield of staple crops and threatening global food security. As one of the largest classes of regulators in vascular plants, WRKY transcription factors play critical roles governing flavonoid biosynthesis during stress responses. By binding major W-box cis-elements (TGACCA/T) in target promoters, WRKYs modulate diverse signaling pathways. In this review, we optimized existing WRKY phylogenetic trees by incorporating additional plant species with WRKY proteins implicated in stress tolerance and flavonoid regulation. Based on the improved frameworks and documented results, we aim to deduce unifying themes of distinct WRKY subfamilies governing specific stress responses and flavonoid metabolism. These analyses will generate experimentally testable hypotheses regarding the putative functions of uncharacterized WRKY homologs in tuning flavonoid accumulation to enhance stress resilience.

3.
Front Plant Sci ; 13: 1042084, 2022.
Article in English | MEDLINE | ID: mdl-36531407

ABSTRACT

Ethylene Responsive Factor (ERF) subfamily comprise the largest number of proteins in the plant AP2/ERF superfamily, and have been most extensively studied on the biological functions. Members of this subfamily have been proven to regulate plant resistances to various abiotic stresses, such as drought, salinity, chilling and some other adversities. Under these stresses, ERFs are usually activated by mitogen-activated protein kinase induced phosphorylation or escape from ubiquitin-ligase enzymes, and then form complex with nucleic proteins before binding to cis-element in promoter regions of stress responsive genes. In this review, we will discuss the phylogenetic relationships among the ERF subfamily proteins, summarize molecular mechanism how the transcriptional activity of ERFs been regulated and how ERFs of different subgroup regulate the transcription of stress responsive genes, such as high-affinity K+ transporter gene PalHKT1;2, reactive oxygen species related genes LcLTP, LcPrx, and LcRP, flavonoids synthesis related genes FtF3H and LhMYBSPLATTER, etc. Though increasing researches demonstrate that ERFs are involved in various abiotic stresses, very few interact proteins and target genes of them have been comprehensively annotated. Hence, future research prospects are described on the mechanisms of how stress signals been transited to ERFs and how ERFs regulate the transcriptional expression of stress responsive genes.

4.
Front Plant Sci ; 12: 677611, 2021.
Article in English | MEDLINE | ID: mdl-34220896

ABSTRACT

Basic helix-loop-helix proteins (bHLHs) comprise one of the largest families of transcription factors in plants. They have been shown to be involved in responses to various abiotic stresses, such as drought, salinity, chilling, heavy metal toxicity, iron deficiency, and osmotic damages. By specifically binding to cis-elements in the promoter region of stress related genes, bHLHs can regulate their transcriptional expression, thereby regulating the plant's adaptive responses. This review focuses on the structural characteristics of bHLHs, the regulatory mechanism of how bHLHs are involved transcriptional activation, and the mechanism of how bHLHs regulate the transcription of target genes under various stresses. Finally, as increasing research demonstrates that flavonoids are usually induced under fluctuating environments, the latest research progress and future research prospects are described on the mechanisms of how flavonoid biosynthesis is regulated by bHLHs in the regulation of the plant's responses to abiotic stresses.

5.
Methods Mol Biol ; 2358: 83-91, 2021.
Article in English | MEDLINE | ID: mdl-34270047

ABSTRACT

Protein phosphorylation is one of the most important posttranslational modifications. The phosphorylation and dephosphorylation of proteins regulate almost every cellular process, and the understanding of their functions can provide insights into the regulation of living systems at the molecular level. In recent years, both the rapid developments of enrichment approaches for phosphoproteins and MS techniques have improved the research scope and depth of phosphoproteomics. Using NaCl-treated soybean roots as the experimental materials, this chapter introduces the protein extraction, digestion with filter-aided sample preparation (FASP), eight-plex iTRAQ labeling, TiO2-based enrichment of phosphopeptides, LC-MS/MS analysis, as well as bioinformatic methods and protocols.


Subject(s)
Glycine max , Proteomics , Chromatography, Liquid , Phosphopeptides/metabolism , Phosphoproteins/metabolism , Phosphorylation , Plant Roots , Salinity , Glycine max/metabolism , Tandem Mass Spectrometry
7.
BMC Plant Biol ; 19(1): 529, 2019 Nov 29.
Article in English | MEDLINE | ID: mdl-31783790

ABSTRACT

BACKGROUND: Trees of the genus Taxus are highly valuable medicinal plants with multiple pharmacological effects on various cancer treatments. Paclitaxel from Taxus trees is an efficient and widely used anticancer drug, however, the accumulation of taxoids and other active ingredients can vary greatly among Taxus species. In our study, the metabolomes of three Taxus species have been investigated. RESULTS: A total of 2246 metabolites assigned to various primary and secondary metabolic pathways were identified using an untargeted approach. Analysis of differentially accumulated metabolites identified 358 T. media-, 220 T. cuspidata-, and 169 T. mairei-specific accumulated metabolites, respectively. By searching the metabolite pool, 7 MEP pathway precursors, 11 intermediates, side chain products and derivatives of paclitaxel, and paclitaxel itself were detected. Most precursors, initiated intermediates were highly accumulated in T. mairei, and most intermediate products approaching the end point of taxol biosynthesis pathway were primarily accumulated in T. cuspidata and T. media. Our data suggested that there were higher-efficiency pathways to paclitaxel in T. cuspidata and T. media compared with in T. mairei. As an important class of active ingredients in Taxus trees, a majority of flavonoids were predominantly accumulated in T. mairei rather than T. media and T. cuspidata. The variations in several selected taxoids and flavonoids were confirmed using a targeted approach. CONCLUSIONS: Systematic correlativity analysis identifies a number of metabolites associated with paclitaxel biosynthesis, suggesting a potential negative correlation between flavonoid metabolism and taxoid accumulation. Investigation of the variations in taxoids and other active ingredients will provide us with a deeper understanding of the interspecific differential accumulation of taxoids and an opportunity to accelerate the highest-yielding species breeding and resource utilization.


Subject(s)
Flavonoids/metabolism , Metabolome , Taxoids/metabolism , Taxus/metabolism , Metabolic Networks and Pathways , Metabolomics , Species Specificity
8.
Mol Cell Proteomics ; 18(11): 2225-2243, 2019 11.
Article in English | MEDLINE | ID: mdl-31467032

ABSTRACT

Soybean (Glycine max (L.) Merrill) is an important component of the human diet and animal feed, but soybean production is limited by abiotic stresses especially salinity. We recently found that rhizobia inoculation enhances soybean tolerance to salt stress, but the underlying mechanisms are unaddressed. Here, we used quantitative phosphoproteomic and metabonomic approaches to identify changes in phosphoproteins and metabolites in soybean roots treated with rhizobia inoculation and salt. Results revealed differential regulation of 800 phosphopeptides, at least 32 of these phosphoproteins or their homologous were reported be involved in flavonoid synthesis or trafficking, and 27 out of 32 are transcription factors. We surveyed the functional impacts of all these 27 transcription factors by expressing their phospho-mimetic/ablative mutants in the roots of composite soybean plants and found that phosphorylation of GmMYB183 could affect the salt tolerance of the transgenic roots. Using data mining, ChIP and EMSA, we found that GmMYB183 binds to the promoter of the soybean GmCYP81E11 gene encoding for a Cytochrome P450 monooxygenase which contributes to the accumulation of ononin, a monohydroxy B-ring flavonoid that negatively regulates soybean tolerance to salinity. Phosphorylation of GmMYB183 was inhibited by rhizobia inoculation; overexpression of GmMYB183 enhanced the expression of GmCYP81E11 and rendered salt sensitivity to the transgenic roots; plants deficient in GmMYB183 function are more tolerant to salt stress as compared with wild-type soybean plants, these results correlate with the transcriptional induction of GmCYP81E11 by GmMYB183 and the subsequent accumulation of ononin. Our findings provide molecular insights into how rhizobia enhance salt tolerance of soybean plants.


Subject(s)
Flavonoids/biosynthesis , Glycine max/metabolism , Phosphoproteins/metabolism , Plant Proteins/metabolism , Rhizobium/metabolism , Salt Tolerance , Transcription Factors/metabolism , Gene Expression Regulation, Plant , Metabolome , Phosphoproteins/genetics , Phosphorylation , Plant Proteins/genetics , Proteome/analysis , Glycine max/genetics , Glycine max/growth & development , Transcription Factors/genetics
9.
Int J Mol Sci ; 19(7)2018 Jul 23.
Article in English | MEDLINE | ID: mdl-30041471

ABSTRACT

Low phosphate (Pi) availability is an important limiting factor affecting soybean production. However, the underlying molecular mechanisms responsible for low Pi stress response and tolerance remain largely unknown, especially for the early signaling events under low Pi stress. Here, a genome-wide transcriptomic analysis in soybean leaves treated with a short-term Pi-deprivation (24 h) was performed through high-throughput RNA sequencing (RNA-seq) technology. A total of 533 loci were found to be differentially expressed in response to Pi deprivation, including 36 mis-annotated loci and 32 novel loci. Among the differentially expressed genes (DEGs), 303 were induced and 230 were repressed by Pi deprivation. To validate the reliability of the RNA-seq data, 18 DEGs were randomly selected and analyzed by quantitative RT-PCR (reverse transcription polymerase chain reaction), which exhibited similar fold changes with RNA-seq. Enrichment analyses showed that 29 GO (Gene Ontology) terms and 8 KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways were significantly enriched in the up-regulated DEGs and 25 GO terms and 16 KEGG pathways were significantly enriched in the down-regulated DEGs. Some DEGs potentially involved in Pi sensing and signaling were up-regulated by short-term Pi deprivation, including five SPX-containing genes. Some DEGs possibly associated with water and nutrient uptake, hormonal and calcium signaling, protein phosphorylation and dephosphorylation and cell wall modification were affected at the early stage of Pi deprivation. The cis-elements of PHO (phosphatase) element, PHO-like element and P responsive element were present more frequently in promoter regions of up-regulated DEGs compared to that of randomly-selected genes in the soybean genome. Our transcriptomic data showed an intricate network containing transporters, transcription factors, kinases and phosphatases, hormone and calcium signaling components is involved in plant responses to early Pi deprivation.


Subject(s)
Glycine max/genetics , Phosphates/deficiency , Plant Leaves/metabolism , Stress, Physiological , Transcriptome , Gene Expression Regulation, Plant , Plant Leaves/genetics , Glycine max/metabolism
10.
Mol Cell Proteomics ; 17(6): 1209-1224, 2018 06.
Article in English | MEDLINE | ID: mdl-29496908

ABSTRACT

Salinity causes osmotic stress to crops and limits their productivity. To understand the mechanism underlying soybean salt tolerance, proteomics approach was used to identify phosphoproteins altered by NaCl treatment. Results revealed that 412 of the 4698 quantitatively analyzed phosphopeptides were significantly up-regulated on salt treatment, including a phosphopeptide covering the serine 59 in the transcription factor GmMYB173. Our data showed that GmMYB173 is one of the three MYB proteins differentially phosphorylated on salt treatment, and a substrate of the casein kinase-II. MYB recognition sites exist in the promoter of flavonoid synthase gene GmCHS5 and one was found to mediate its recognition by GmMYB173, an event facilitated by phosphorylation. Because GmCHS5 catalyzes the synthesis of chalcone, flavonoids derived from chalcone were monitored using metabolomics approach. Results revealed that 24 flavonoids of 6745 metabolites were significantly up-regulated after salt treatment. We further compared the salt tolerance and flavonoid accumulation in soybean transgenic roots expressing the 35S promoter driven cds and RNAi constructs of GmMYB173 and GmCHS5, as well as phospho-mimic (GmMYB173S59D ) and phospho-ablative (GmMYB173S59A ) mutants of GmMYB173 Overexpression of GmMYB173S59D and GmCHS5 resulted in the highest increase in salt tolerance and accumulation of cyaniding-3-arabinoside chloride, a dihydroxy B-ring flavonoid. The dihydroxy B-ring flavonoids are more effective as anti-oxidative agents when compared with monohydroxy B-ring flavonoids, such as formononetin. Hence the salt-triggered phosphorylation of GmMYB173, subsequent increase in its affinity to GmCHS5 promoter and the elevated transcription of GmCHS5 likely contribute to soybean salt tolerance by enhancing the accumulation of dihydroxy B-ring flavonoids.


Subject(s)
Flavonoids/metabolism , Glycine max/metabolism , Salt Stress/physiology , Soybean Proteins/metabolism , Transcription Factors/metabolism , Metabolomics , Phosphoproteins/metabolism , Proteomics
11.
Tree Physiol ; 37(12): 1659-1671, 2017 12 01.
Article in English | MEDLINE | ID: mdl-28985439

ABSTRACT

Taxol is currently a valuable anticancer drug; however, the accumulated mixture of taxoids can vary greatly among Taxus species. So far, there is very little genomic information for the genus Taxus, except for Taxus baccata. Transcriptome analysis is a powerful approach to explore the different regulatory mechanisms underlying the taxoid biosynthesis pathway in Taxus species. First, we quantified the variation in the taxoid contents between Taxus media and Taxus mairei. The contents of paclitaxel and 10-deacetylpaclitaxel in T. media are higher than that in T. mairei. Then, the transcriptome profiles of T. media and T. mairei were analyzed to investigate the altered expressions. A total of 20,704 significantly differentially expressed genes (DEGs), including 9865 unigenes predominantly expressed in T. media and 10,839 unigenes predominantly expressed in T. mairei, were identified. In total, 120 jasmonic acid-related DEGs were analyzed, suggesting variations in 'response to JA stimulus' and 'JA biosynthetic process' pathways between T. media and T. mairei. Furthermore, a number of genes related to the precursor supply, taxane skeleton formation and hydroxylation, and C13-side chain assembly were also identified. The differential expression of the candidate genes involved in taxoid biosynthetic pathways may explain the variation in the taxoid contents between T. media and T. mairei.


Subject(s)
Taxoids/metabolism , Taxus/chemistry , Chromatography, High Pressure Liquid , Gene Expression Profiling , Paclitaxel/metabolism , Tandem Mass Spectrometry , Taxus/genetics , Taxus/metabolism , Transcriptome/genetics
12.
Front Plant Sci ; 8: 877, 2017.
Article in English | MEDLINE | ID: mdl-28596783

ABSTRACT

Calcium ion (Ca2+) is a universal second messenger that plays a critical role in plant responses to diverse physiological and environmental stimuli. The stimulus-specific signals are perceived and decoded by a series of Ca2+ binding proteins serving as Ca2+ sensors. The majority of Ca2+ sensors possess the EF-hand motif, a helix-loop-helix structure which forms a turn-loop structure. Although EF-hand proteins in model plant such as Arabidopsis have been well described, the identification, classification, and the physiological functions of EF-hand-containing proteins from soybean are not systemically reported. In this study, a total of at least 262 genes possibly encoding proteins containing one to six EF-hand motifs were identified in soybean genome. These genes include 6 calmodulins (CaMs), 144 calmodulin-like proteins (CMLs), 15 calcineurin B-like proteins, 50 calcium-dependent protein kinases (CDPKs), 13 CDPK-related protein kinases, 2 Ca2+- and CaM-dependent protein kinases, 17 respiratory burst oxidase homologs, and 15 unclassified EF-hand proteins. Most of these genes (87.8%) contain at least one kind of hormonal signaling- and/or stress response-related cis-elements in their -1500 bp promoter regions. Expression analyses by exploring the published microarray and Illumina transcriptome sequencing data revealed that the expression of these EF-hand genes were widely detected in different organs of soybean, and nearly half of the total EF-hand genes were responsive to various environmental or nutritional stresses. Quantitative RT-PCR was used to confirm their responsiveness to several stress treatments. To confirm the Ca2+-binding ability of these EF-hand proteins, four CMLs (CML1, CML13, CML39, and CML95) were randomly selected for SDS-PAGE mobility-shift assay in the presence and absence of Ca2+. Results showed that all of them have the ability to bind Ca2+. This study provided the first comprehensive analyses of genes encoding for EF-hand proteins in soybean. Information on the classification, phylogenetic relationships and expression profiles of soybean EF-hand genes in different tissues and under various environmental and nutritional stresses will be helpful for identifying candidates with potential roles in Ca2+ signal-mediated physiological processes including growth and development, plant-microbe interactions and responses to biotic and abiotic stresses.

13.
Mol Cell Proteomics ; 15(1): 266-88, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26407991

ABSTRACT

Understanding molecular mechanisms underlying plant salinity tolerance provides valuable knowledgebase for effective crop improvement through genetic engineering. Current proteomic technologies, which support reliable and high-throughput analyses, have been broadly used for exploring sophisticated molecular networks in plants. In the current study, we compared phosphoproteomic and proteomic changes in roots of different soybean seedlings of a salt-tolerant cultivar (Wenfeng07) and a salt-sensitive cultivar (Union85140) induced by salt stress. The root samples of Wenfeng07 and Union85140 at three-trifoliate stage were collected at 0 h, 0.5 h, 1 h, 4 h, 12 h, 24 h, and 48 h after been treated with 150 mm NaCl. LC-MS/MS based phosphoproteomic analysis of these samples identified a total of 2692 phosphoproteins and 5509 phosphorylation sites. Of these, 2344 phosphoproteins containing 3744 phosphorylation sites were quantitatively analyzed. Our results showed that 1163 phosphorylation sites were differentially phosphorylated in the two compared cultivars. Among them, 10 MYB/MYB transcription factor like proteins were identified with fluctuating phosphorylation modifications at different time points, indicating that their crucial roles in regulating flavonol accumulation might be mediated by phosphorylated modifications. In addition, the protein expression profiles of these two cultivars were compared using LC MS/MS based shotgun proteomic analysis, and expression pattern of all the 89 differentially expressed proteins were independently confirmed by qRT-PCR. Interestingly, the enzymes involved in chalcone metabolic pathway exhibited positive correlations with salt tolerance. We confirmed the functional relevance of chalcone synthase, chalcone isomerase, and cytochrome P450 monooxygenase genes using soybean composites and Arabidopsis thaliana mutants, and found that their salt tolerance were positively regulated by chalcone synthase, but was negatively regulated by chalcone isomerase and cytochrome P450 monooxygenase. A novel salt tolerance pathway involving chalcone metabolism, mostly mediated by phosphorylated MYB transcription factors, was proposed based on our findings. (The mass spectrometry raw data are available via ProteomeXchange with identifier PXD002856).


Subject(s)
Glycine max/metabolism , Phosphoproteins/metabolism , Plant Proteins/metabolism , Plant Roots/metabolism , Proteome/metabolism , Proteomics/methods , Acyltransferases/genetics , Acyltransferases/metabolism , Chromatography, Liquid , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Electrophoresis, Gel, Two-Dimensional , Gene Expression Profiling/methods , Intramolecular Lyases/genetics , Intramolecular Lyases/metabolism , Phosphoproteins/genetics , Phosphorylation , Plant Proteins/genetics , Plant Roots/genetics , Proteome/genetics , Reverse Transcriptase Polymerase Chain Reaction , Salt Tolerance/genetics , Glycine max/classification , Glycine max/genetics , Species Specificity , Tandem Mass Spectrometry , Transcription Factors/genetics , Transcription Factors/metabolism
14.
Front Plant Sci ; 6: 459, 2015.
Article in English | MEDLINE | ID: mdl-26150823

ABSTRACT

Calmodulin-binding transcription activators (CAMTAs) are well-characterized calmodulin-binding transcription factors in the plant kingdom. Previous work shows that CAMTAs play important roles in various biological processes including disease resistance, herbivore attack response, and abiotic stress tolerance. However, studies that address the function of CAMTAs during the establishment of symbiosis between legumes and rhizobia are still lacking. This study undertook comprehensive identification and analysis of CAMTA genes using the latest updated M. truncatula genome. All the MtCAMTA genes were expressed in a tissues-specific manner and were responsive to environmental stress-related hormones. The expression profiling of MtCAMTA genes during the early phase of Sinorhizobium meliloti infection was also analyzed. Our data showed that the expression of most MtCAMTA genes was suppressed in roots by S. meliloti infection. The responsiveness of MtCAMTAs to S. meliloti infection indicated that they may function as calcium-regulated transcription factors in the early nodulation signaling pathway. In addition, bioinformatics analysis showed that CAMTA binding sites existed in the promoter regions of various early rhizobial infection response genes, suggesting possible MtCAMTAs-regulated downstream candidate genes during the early phase of S. meliloti infection. Taken together, these results provide basic information about MtCAMTAs in the model legume M. truncatula, and the involvement of MtCAMTAs in nodule organogenesis. This information furthers our understanding of MtCAMTA protein functions in M. truncatula and opens new avenues for continued research.

15.
PLoS One ; 10(7): e0131489, 2015.
Article in English | MEDLINE | ID: mdl-26154163

ABSTRACT

Temperature is a predominant environmental factor affecting grass germination and distribution. Various thermal-germination models for prediction of grass seed germination have been reported, in which the relationship between temperature and germination were defined with kernel functions, such as quadratic or quintic function. However, their prediction accuracies warrant further improvements. The purpose of this study is to evaluate the relative prediction accuracies of genetic algorithm (GA) models, which are automatically parameterized with observed germination data. The seeds of five P. pratensis (Kentucky bluegrass, KB) cultivars were germinated under 36 day/night temperature regimes ranging from 5/5 to 40/40 °C with 5 °C increments. Results showed that optimal germination percentages of all five tested KB cultivars were observed under a fluctuating temperature regime of 20/25 °C. Meanwhile, the constant temperature regimes (e.g., 5/5, 10/10, 15/15 °C, etc.) suppressed the germination of all five cultivars. Furthermore, the back propagation artificial neural network (BP-ANN) algorithm was integrated to optimize temperature-germination response models from these observed germination data. It was found that integrations of GA-BP-ANN (back propagation aided genetic algorithm artificial neural network) significantly reduced the Root Mean Square Error (RMSE) values from 0.21~0.23 to 0.02~0.09. In an effort to provide a more reliable prediction of optimum sowing time for the tested KB cultivars in various regions in the country, the optimized GA-BP-ANN models were applied to map spatial and temporal germination percentages of blue grass cultivars in China. Our results demonstrate that the GA-BP-ANN model is a convenient and reliable option for constructing thermal-germination response models since it automates model parameterization and has excellent prediction accuracy.


Subject(s)
Algorithms , Poa/growth & development , China , Circadian Rhythm , Germination , Models, Theoretical , Seasons , Temperature , Time Factors
16.
PLoS One ; 8(12): e82413, 2013.
Article in English | MEDLINE | ID: mdl-24349278

ABSTRACT

Temperature is one of the most significant environmental factors that affects germination of grass seeds. Reliable prediction of the optimal temperature for seed germination is crucial for determining the suitable regions and favorable sowing timing for turf grass cultivation. In this study, a back-propagation-artificial-neural-network-aided dual quintic equation (BP-ANN-QE) model was developed to improve the prediction of the optimal temperature for seed germination. This BP-ANN-QE model was used to determine optimal sowing times and suitable regions for three Cynodon dactylon cultivars (C. dactylon, 'Savannah' and 'Princess VII'). Prediction of the optimal temperature for these seeds was based on comprehensive germination tests using 36 day/night (high/low) temperature regimes (both ranging from 5/5 to 40/40°C with 5°C increments). Seed germination data from these temperature regimes were used to construct temperature-germination correlation models for estimating germination percentage with confidence intervals. Our tests revealed that the optimal high/low temperature regimes required for all the three bermudagrass cultivars are 30/5, 30/10, 35/5, 35/10, 35/15, 35/20, 40/15 and 40/20°C; constant temperatures ranging from 5 to 40°C inhibited the germination of all three cultivars. While comparing different simulating methods, including DQEM, Bisquare ANN-QE, and BP-ANN-QE in establishing temperature based germination percentage rules, we found that the R(2) values of germination prediction function could be significantly improved from about 0.6940-0.8177 (DQEM approach) to 0.9439-0.9813 (BP-ANN-QE). These results indicated that our BP-ANN-QE model has better performance than the rests of the compared models. Furthermore, data of the national temperature grids generated from monthly-average temperature for 25 years were fit into these functions and we were able to map the germination percentage of these C. dactylon cultivars in the national scale of China, and suggested the optimum sowing regions and times for them.


Subject(s)
Cynodon/growth & development , Germination , Neural Networks, Computer , Temperature , China , Circadian Rhythm/physiology , Confidence Intervals , Regression Analysis , Time Factors
17.
J Agric Food Chem ; 61(36): 8711-21, 2013 Sep 11.
Article in English | MEDLINE | ID: mdl-23930713

ABSTRACT

Metabolomics is developing as an important functional genomics tool for understanding plant systems' response to genetic and environmental changes. Here, we characterized the metabolic changes of cultivated soybean C08 (Glycine max L. Merr) and wild soybean W05 (Glycine soja Sieb.et Zucc.) under salt stress using MS-based metabolomics, in order to reveal the phenotypes of their eight hybrid offspring (9H0086, 9H0124, 9H0391, 9H0736, 9H0380, 9H0400, 9H0434, and 9H0590). Total small molecule extracts of soybean seedling leaves were profiled by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-Fourier transform mass spectrometry (LC-FT/MS). We found that wild soybean contained higher amounts of disaccharides, sugar alcohols, and acetylated amino acids than cultivated soybean, but with lower amounts of monosaccharides, carboxylic acids, and unsaturated fatty acids. Further investigations demonstrated that the ability of soybean to tolerate salt was mainly based on synthesis of compatible solutes, induction of reactive oxygen species (ROS) scavengers, cell membrane modifications, and induction of plant hormones. On the basis of metabolic phenotype, the salt-tolerance abilities of 9H0086, 9H0124, 9H0391, 9H0736, 9H0380, 9H0400, 9H0434, and 9H0590 were discriminated. Our results demonstrated that MS-based metabolomics provides a fast and powerful approach to discriminate the salt-tolerance characteristics of soybeans.


Subject(s)
Glycine max/chemistry , Metabolomics , Phenotype , Salt-Tolerant Plants , Sodium Chloride , Stress, Physiological , Chromatography, Liquid , Fabaceae/chemistry , Gas Chromatography-Mass Spectrometry , Plant Leaves/chemistry , Seedlings/chemistry , Species Specificity , Spectroscopy, Fourier Transform Infrared
18.
BMC Plant Biol ; 11: 178, 2011 Dec 15.
Article in English | MEDLINE | ID: mdl-22168212

ABSTRACT

BACKGROUND: Accumulated evidence suggest that specific patterns of histone posttranslational modifications (PTMs) and their crosstalks may determine transcriptional outcomes. However, the regulatory mechanisms of these "histone codes" in plants remain largely unknown. RESULTS: In this study, we demonstrate for the first time that a salinity stress inducible PHD (plant homeodomain) finger domain containing protein GmPHD5 can read the "histone code" underlying the methylated H3K4. GmPHD5 interacts with other DNA binding proteins, including GmGNAT1 (an acetyl transferase), GmElongin A (a transcription elongation factor) and GmISWI (a chromatin remodeling protein). Our results suggest that GmPHD5 can recognize specific histone methylated H3K4, with preference to di-methylated H3K4. Here, we illustrate that the interaction between GmPHD5 and GmGNAT1 is regulated by the self-acetylation of GmGNAT1, which can also acetylate histone H3. GmGNAT1 exhibits a preference toward acetylated histone H3K14. These results suggest a histone crosstalk between methylated H3K4 and acetylated H3K14. Consistent to its putative roles in gene regulation under salinity stress, we showed that GmPHD5 can bind to the promoters of some confirmed salinity inducible genes in soybean. CONCLUSION: Here, we propose a model suggesting that the nuclear protein GmPHD5 is capable of regulating the crosstalk between histone methylation and histone acetylation of different lysine residues. Nevertheless, GmPHD5 could also recruit chromatin remodeling factors and transcription factors of salt stress inducible genes to regulate their expression in response to salinity stress.


Subject(s)
Glycine max/genetics , Histones/metabolism , Homeodomain Proteins/metabolism , Salinity , Soybean Proteins/metabolism , Stress, Physiological , Acetylation , Cloning, Molecular , Gene Expression Regulation, Plant , Histones/genetics , Homeodomain Proteins/genetics , Lysine/metabolism , Methylation , Protein Processing, Post-Translational , Soybean Proteins/genetics , Glycine max/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...