Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Front Immunol ; 15: 1298275, 2024.
Article in English | MEDLINE | ID: mdl-38707903

ABSTRACT

Background: Innate immune responses against infectious agents can act as triggers of inflammatory diseases. On the other hand, various pathogens have developed mechanisms for the evasion of the immune response, based on an inhibition of innate immunity and inflammatory responses. Inflammatory diseases could thus be controlled through the administration of pathogens or pathogen-derived molecules, capable of interfering with the mechanisms at the basis of inflammation. In this framework, the NLRP3 inflammasome is an important component in innate antimicrobial responses and a major player in the inflammatory disease. Parasites of the genus Leishmania are master manipulators of innate immune mechanisms, and different species have been shown to inhibit inflammasome formation. However, the exploitation of pathogenic Leishmania species as blockers of NLRP3-based inflammatory diseases poses safety concerns. Methods: To circumvent safety issues associated with pathogenic parasites, we focused on Leishmania tarentolae, a species of Leishmania that is not infectious to humans. Because NLRP3 typically develops in macrophages, in response to the detection and engulfment microorganisms, we performed our experiments on a monocyte-macrophage cell line (THP-1), either wild type or knockout for ASC, a key component of NLRP3 formation, with determination of cytokines and other markers of inflammation. Results: L. tarentolae was shown to possess the capability of dampening the formation of NLRP3 inflammasome and the consequent expression of pro-inflammatory molecules, with minor differences compared to effects of pathogenic Leishmania species. Conclusion: The non-pathogenic L. tarentolae appears a promising pro-biotic microbe with anti-inflammatory properties or a source of immune modulating cellular fractions or molecules, capable of interfering with the formation of the NLRP3 inflammasome.


Subject(s)
Inflammasomes , Inflammation , Leishmania , NLR Family, Pyrin Domain-Containing 3 Protein , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Humans , Inflammasomes/metabolism , Inflammasomes/immunology , Leishmania/immunology , Inflammation/immunology , THP-1 Cells , Macrophages/immunology , Macrophages/metabolism , Macrophages/parasitology , Immunity, Innate , Cytokines/metabolism
2.
Pharmaceuticals (Basel) ; 16(12)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38139851

ABSTRACT

Activation of the NLRP3 inflammasome in response to either exogenous (PAMPs) or endogenous (DAMPs) stimuli results in the production of IL-18, caspase-1 and IL-1ß. These cytokines have a beneficial role in promoting inflammation, but an excessive activation of the inflammasome and the consequent constitutive inflammatory status plays a role in human pathologies, including Alzheimer's disease (AD). Autophagic removal of NLRP3 inflammasome activators can reduce inflammasome activation and inflammation. Likewise, inflammasome signaling pathways regulate autophagy, allowing the development of inflammatory responses but preventing excessive and detrimental inflammation. Nanotechnology led to the development of liposome engineered nanovectors (NVs) that can load and carry drugs. We verified in an in vitro model of AD-associated inflammation the ability of Glibenclamide-loaded NVs (GNVs) to modulate the balance between inflammasome activation and autophagy. Human THP1dM cells were LPS-primed and oligomeric Aß-stimulated in the presence/absence of GNVs. IL-1ß, IL-18 and activated caspase-1 production was evaluated by the Automated Immunoassay System (ELLA); ASC speck formation (a marker of NLRP3 activation) was analyzed by FlowSight Imaging flow-cytometer (AMNIS); the expression of autophagy targets was investigated by RT-PCR and Western blot (WB); and the modulation of autophagy-related up-stream signaling pathways and Tau phosphorylation were WB-quantified. Results showed that GNVs reduce activation of the NLRP3 inflammasome and prevent the Aß-induced phosphorylation of ERK, AKT, and p70S6 kinases, potentiating autophagic flux and counteracting Tau phosphorylation. These preliminary results support the investigation of GNVs as a possible novel strategy in disease and rehabilitation to reduce inflammasome-associated inflammation.

3.
Front Immunol ; 14: 1190925, 2023.
Article in English | MEDLINE | ID: mdl-37545517

ABSTRACT

Introduction: Autism spectrum disorder (ASD) is accompanied by complex immune alterations and inflammation, and the possible role played by Natural Killer (NK) in such alterations is only barely understood. Methods: To address this question we analysed activating and inhibitory NK receptors, as well as NK cells phenotype and function in a group of mothers of children who developed ASD (ASD-MO; N=24) comparing results to those obtained in mothers of healthy children who did not develop (HC-MO; N=25). Results: Results showed that in ASD-MO compared to HC-MO: 1) NK cells expressing the inhibitory receptor ILT2 are significantly decreased; 2) the activating HLA-G14bp+ polymorphism is more frequently observed and is correlated with the decrease of ILT2-expressing cells; 3) the CD56bright and CD56dim NK subsets are increased; 4) IFNγ and TNF production is reduced; and 5) perforin- and granzymes-releasing NK cells are increased even in unstimulated conditions and could not be upregulated by mitogenic stimulation. Discussion: Results herein reinforce the hypothesis that ASD relatives present traits similar to, but not as severe as the defining features of ASD (Autism endophenotype) and identify a role for NK cells impairment in generating the inflammatory milieu that is observed in ASD.


Subject(s)
Autism Spectrum Disorder , Mothers , Female , Humans , Pilot Projects , Killer Cells, Natural , Phenotype
4.
Int J Mol Sci ; 24(10)2023 May 11.
Article in English | MEDLINE | ID: mdl-37239970

ABSTRACT

Alzheimer's Disease is the most common form of dementia; its key pathological findings include the deposition of extracellular-neurotoxic-plaques composed of amyloid-beta (Ab). AD-pathogenesis involves mechanisms that operate outside the brain, and new researches indicate that peripheral inflammation is an early event in the disease. Herein, we focus on a receptor known as triggering-receptor-expressed-on-myeloid-cells2 (TREM2), which promotes the optimal immune cells function required to attenuate AD-progression and is, therefore, a potential target as peripheral diagnostic and prognostic-biomarker for Alzheimer's Disease. The objective of this exploratory study was to analyze: (1) soluble-TREM2 (sTREM2) plasma and cerebrospinal fluid concentration, (2) TREM2-mRNA, (3) the percentage of TREM2-expressing monocytes, and (4) the concentration of miR-146a-5p and miR-34a-5p suspected to influence TREM2 transcription. Experiments were performed on PBMC collected by 15AD patients and 12age-matched healthy controls that were unstimulated or treated in inflammatory (LPS) conditions and Ab42 for 24 h; Aß42-phagocytosis was also analyzed by AMNIS FlowSight. Results although preliminary, due to limitations by the small sample-size, showed that in AD compared to HC: TREM2 expressing monocytes were reduced, plasma sTREM2 concentration and TREM2-mRNA were significantly upregulated and Ab42-phagocytosis was diminished (for all p < 0.05). miR-34a-5p expression was reduced (p = 0.02) as well in PBMC of AD, and miR-146 was only observed in AD cells (p = 0.0001).


Subject(s)
Alzheimer Disease , MicroRNAs , Humans , Alzheimer Disease/pathology , Leukocytes, Mononuclear/pathology , Amyloid beta-Peptides/cerebrospinal fluid , Phagocytosis , MicroRNAs/genetics , Membrane Glycoproteins/genetics , Receptors, Immunologic/genetics
5.
Front Immunol ; 13: 947320, 2022.
Article in English | MEDLINE | ID: mdl-36072604

ABSTRACT

To explore the effects of SARS-CoV-2-mRNA vaccines on innate immune responses we enrolled 58 individuals who received 3 doses of the BNT162b2 vaccine in a longitudinal study; 45 of these individuals had never been SARS-CoV-2 infected. Results showed that vaccination significantly increased: 1) classical and intermediate inflammatory monocytes, 2) CD56bright, CD56dim, and CD56dim/CD16dim NK cells, and 3) IFN-γ+ ;production as well as perforin and granzyme content by NK cells. Vaccination also reduced expression of the NK inhibitory receptor ILT-2, increasing that of the stimulatory molecule 2DS2. These effects were long-lasting and were boosted by every vaccine dose. Notably, ILT-2 expressing NK cells were reduced even more robustly in COVID-19-recovereed vaccines. BNT162b1 mRNA vaccine is known to induce potent adaptive immune responses; results herein show its ability to modulate innate immune responses as well, offering further support to the indication to proceed with worldwide vaccination efforts to end the SARS-CoV-2 pandemic.


Subject(s)
COVID-19 Vaccines , COVID-19 , BNT162 Vaccine , COVID-19/prevention & control , Humans , Immunity, Innate , Longitudinal Studies , RNA, Messenger/genetics , SARS-CoV-2 , Vaccines, Synthetic , mRNA Vaccines
6.
Cells ; 11(16)2022 08 10.
Article in English | MEDLINE | ID: mdl-36010554

ABSTRACT

This study aimed to investigate if rehabilitation could down-regulated sarcopenia-associated inflammation by modulating the crosstalk between the neuroendocrine and immune systems, with the aim of ameliorating quality of life of sarcopenic subjects. A total of 60 sarcopenic patients (49 females and 11 males; median age 74.5, interquartile range 71-79), undergoing a personalized rehabilitation program, have been recruited and subjected to: (1) functional and physical evaluation (Short Physical Performance Battery (SPPB), Barthel Index and Tinetti Test); (2) pro-inflammatory IL-1ß, TNF-α, IL-6, IL-18, and anti-inflammatory IL-10 cytokines plasmatic level measures; and (3) norepinephrine, epinephrine, dopamine, and serotonin neurotransmitter level evaluation at time of enrollment (T0) and once rehabilitation was concluded (1 month, T1). Rehabilitation combined a balance and strength training program with two daily sessions that were fine-tuned and personalized according to the ability of the patient. The results showed a significant increase at T1 in the plasmatic levels of IL-10 (p = 0.018) and of norepinephrine (p = 0.016)), whereas the concentration of IL-18 was significantly reduced (p = 0.012). Notably, changes in norepinephrine were positively correlated with clinical improvements (Tinetti and Barthel scores, p ≤ 0.0001; SPPB scores, p = 0.0002). These results show that efficient rehabilitation induces a reduction of inflammation, suggesting that this effect could be mediated by a modulation of the neuro-immune axis that results in an increase of norepinephrine.


Subject(s)
Sarcopenia , Aged , Biomarkers , Female , Humans , Inflammation , Interleukin-10 , Interleukin-18 , Male , Norepinephrine , Quality of Life
7.
Cells ; 11(14)2022 07 12.
Article in English | MEDLINE | ID: mdl-35883623

ABSTRACT

BACKGROUND: Aß42 deposition plays a pivotal role in AD pathogenesis by inducing the activation of microglial cells and neuroinflammation. This process is antagonized by microglia-mediated clearance of Aß plaques. Activation of the NLRP3 inflammasome is involved in neuroinflammation and in the impairments of Aß-plaque clearance. On the other hand, stavudine (D4T) downregulates the NLRP3 inflammasome and stimulates autophagy-mediated Aß-clearing in a THP-1-derived macrophages. METHODS: We explored the effect of D4T on Aß autophagy in PBMC from AD patients that were primed with LPS and stimulated with Aß oligomers in the absence/presence of D4T. We analyzed the NLRP3 activity by measuring NLRP3-ASC complex formation by AMNIS FlowSight and pro-inflammatory cytokine (IL-1ß, IL-18 and Caspase-1) production by ELISA. The phosphorylation status of p38, ERK, AKT, p70, and the protein expression of CREB, LAMP2A, beclin-1, Caspase-3 and Bcl2 were analyzed by Western blot. RESULTS: Data showed that D4T: (1) downregulates NLRP3 inflammasome activation and the production of down-stream pro-inflammatory cytokines in PBMC; (2) stimulates the phosphorylation of AKT, ERK and p70 as well as LAMP2A, beclin-1 and Bcl2 expression and reduces Caspase-3 expression, suggesting an effect of this compound on autophagy; (3) increases phospho-CREB, which is a downstream target of p-ERK and p-AKT, inducing anti-inflammatory cytokine production and resulting in a possible decrease of Aß-mediated cytotoxicity; and (4) reduces the phosphorylation of p38, a protein involved in the production of pro-inflammatory cytokines and tau hyperphosphorylation. CONCLUSIONS: D4T reduces the activation of the NLRP3 inflammasome, and it might stimulate autophagy as well as the molecular mechanism that modulates Aß cytotoxicity, and D4T might reduce inflammation in the cells of AD patients. It could be very interesting to check the possible beneficial effects of D4T in the clinical scenario.


Subject(s)
Alzheimer Disease , Inflammasomes , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Autophagy , Beclin-1 , Caspase 3 , Cytokines/metabolism , Humans , Inflammasomes/metabolism , Leukocytes, Mononuclear/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Plaque, Amyloid , Proto-Oncogene Proteins c-akt , Proto-Oncogene Proteins c-bcl-2 , Stavudine
8.
Life (Basel) ; 12(5)2022 May 19.
Article in English | MEDLINE | ID: mdl-35629420

ABSTRACT

Finding new solutions for the management of multiple sclerosis (MS) is crucial: further research is needed to study the effect of non-pharmacological interventions on the symptoms and the course of the disease, especially on lifestyle. Benefits from a proper lifestyle are evident not only on a clinical level but also on immune and neuro-endocrine systems. A brief high-impact multidimensional rehabilitation program (b-HIPE) was proposed for a sample of people with MS (pwMS) with a medium level of disease disability. We tested the change on clinical parameters and quality of life (QoL) after participation in B-HIPE. We furthermore decided to measure beta-endorphin and catecholamines concentrations pre- and post-participation in the b-HIPE program, due to the relationship between these hormones and the immune system in neurodegenerative diseases. Our results showed that after the b-HIPE program, an improvement of clinical parameters and QoL occurred. Moreover, we found higher levels of beta-endorphin and noradrenaline after participation in the program. These findings highlight the importance of implementing lifestyle interventions in the clinical management of MS. Furthermore, we hypothesize that the B-HIPE program increased beta-endorphin and noradrenaline levels, helping to reduce the inflammation related to MS disease.

9.
Pharmaceuticals (Basel) ; 14(11)2021 Nov 20.
Article in English | MEDLINE | ID: mdl-34832969

ABSTRACT

Activation of the NLRP3 inflammasome complex results in the production of IL-18, Caspase-1 and IL-1ß. These cytokines have a beneficial role in promoting inflammation, but an excessive activation of the inflammasome and the consequent constitutive inflammatory status is a negative factor in human pathologies including Alzheimer's Disease (AD). MicroRNAs (miR-NAs) target the 3'UTR region of NLRP3, preventing the activation of the inflammasome and inhibiting cytokine production. Because Stavudine (D4T), an antiretroviral drug, was recently shown to reduce inflammasome activation, we verified whether its effect is mediated by miR-7-5p, miR-22-3p, miR-30e-5p and miR-223-3p: miRNAs that bind the NLRP3-mRNA-UTR region and interfere with protein translation, reducing NLRP3 activation. Peripheral blood mononuclear cells (PBMCs) of twenty AD patients and ten sex-matched Healthy Controls (HC) were stimulated with Lipopolysaccharides (LPS)+Amyloid-beta (Aß42) in the absence/presence of D4T. Expression of genes within the inflammasome complex and of miRNAs was evaluated by RT-PCR; cytokines and caspase-1 production was measured by ELISA. Results have shown that: NLRP3, ASC, IL-1ß and IL-18 expression, as well as IL-18, IL-1ß and caspase-1 production, were significantly augmented (p < 0.05) in LPS+Aß42-stimulated PBMCs of AD patients compared to HC. D4T reduced the expression of inflammasome genes and cytokine production (p < 0.005). miR-7-5p and miR-223-3p expression was significantly increased in LPS+Aß42-stimulated PBMCs of AD patients (p < 0.05), and it was reduced by D4T in AD alone. In conclusion: miR-223-3p and mir-7-5p expression is increased in AD, but this does not result in down-regulation of NLRP3 inflammasome expression and of IL-1ß and IL-18 production. D4T increased miRNA expression in HC but had an opposite effect in AD, suggesting that miRNA regulatory mechanisms are altered in AD.

10.
Mol Neurobiol ; 58(12): 6111-6120, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34453271

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the pandemic of coronavirus disease (COVID-19). Whereas in most cases COVID-19 is asymptomatic or pauci-symptomatic, extremely severe clinical forms are observed. In this case, complex immune dysregulations and an excessive inflammatory response are reported and are the main cause of morbidity and mortality. Natural killer cells are key players in the control of viral infection, and their activity is regulated by a tight balance between activating and inhibitory receptors; an alteration of NK activity was suggested to be associated with the development of severe forms of COVID-19. In this study, we analyzed peripheral NK cell subpopulations and the expression of activating and inhibitory receptors in 30 patients suffering from neurological conditions who recovered from mild, moderate, or severe SARS-CoV-2 infection, comparing the results to those of 10 SARS-CoV-2-uninfected patients. Results showed that an expansion of NK subset with lower cytolytic activity and an augmented expression of the 2DL1 inhibitory receptor, particularly when in association with the C2 ligand (KIR2DL1-C2), characterized the immunological scenario of severe COVID-19 infection. An increase of NK expressing the ILT2 inhibitory receptor was instead seen in patients recovering from mild or moderate infection compared to controls. Results herein suggest that the KIR2DL1-C2 NK inhibitory complex is a risk factor toward the development of severe form of COVID-19. Our results confirm that a complex alteration of NK activity is present in COVID-19 infection and offer a molecular explanation for this observation.


Subject(s)
COVID-19/immunology , Killer Cells, Natural/immunology , Receptors, KIR/metabolism , B-Lymphocytes/immunology , COVID-19/physiopathology , Histocompatibility Antigens/immunology , Humans , Ligands , Lymphocyte Subsets/immunology , T-Lymphocytes/immunology
11.
Int J Mol Sci ; 22(13)2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34281224

ABSTRACT

Multiple sclerosis (MS) is a neurodegenerative inflammatory condition mediated by autoreactive immune processes. Due to its potential to influence host immunity and gut-brain communication, the gut microbiota has been suggested to be involved in the onset and progression of MS. To date, there is no definitive cure for MS, and rehabilitation programs are of the utmost importance, especially in the later stages. However, only a few people generally participate due to poor support, knowledge, and motivation, and no information is available on gut microbiota changes. Herein we evaluated the potential of a brief high-impact multidimensional rehabilitation program (B-HIPE) in a leisure environment to affect the gut microbiota, mitigate MS symptoms and improve quality of life. B-HIPE resulted in modulation of the MS-typical dysbiosis, with reduced levels of pathobionts and the replenishment of beneficial short-chain fatty acid producers. This partial recovery of a eubiotic profile could help counteract the inflammatory tone typically observed in MS, as supported by reduced circulating lipopolysaccharide levels and decreased populations of pro-inflammatory lymphocytes. Improved physical performance and fatigue relief were also found. Our findings pave the way for integrating clinical practice with holistic approaches to mitigate MS symptoms and improve patients' quality of life.


Subject(s)
Gastrointestinal Microbiome , Multiple Sclerosis/rehabilitation , Adult , Aged , Bacterial Translocation , Case-Control Studies , Cohort Studies , Diet, Mediterranean , Exercise , Female , Humans , Male , Middle Aged , Mindfulness , Multiple Sclerosis/diet therapy , Multiple Sclerosis/immunology , Multiple Sclerosis/microbiology , Physical Therapy Modalities , Pilot Projects , T-Lymphocyte Subsets
12.
Front Neurosci ; 15: 639646, 2021.
Article in English | MEDLINE | ID: mdl-33867921

ABSTRACT

To investigate whether different forms of α-synuclein (α-syn) proteins can induce inflammation and activate the NLRP3 inflammasome, we stimulated with monomeric or aggregated α-syn peripheral blood mononuclear cells of Parkinson disease (PD) patients and age- and sex-matched healthy controls (HC). ASC-speck formation, i.e., the intracellular generation of functionally active inflammasome complexes, as well as the production of inflammasome-related [caspase-1, interleukin 1ß (IL-18), and IL-1ß], and pro-IL-6, or anti-IL-10 inflammatory cytokines were evaluated. Gastrointestinal permeability, suggested to be altered in PD, was also investigated by measuring plasma concentration of lipopolysaccharide (LPS) and I-FABP (fatty acid-binding protein). ASC-speck expression, as well as IL-18 and caspase-1 production and LPS and I-FABP plasma concentration, was comparable in PD and HC, indicating that α-syn does not stimulate the NLRP3 inflammasome and that PD does not associate with alterations of intestinal permeability. Interestingly, though, IL-1ß and IL-6 production was increased, whereas that of IL-10 was reduced in α-syn-stimulated cells of PD compared to HC, suggesting that PD-associated neuroinflammation is not the consequence of the activation of the NLRP3 inflammasome but rather of an imbalance between proinflammatory and anti-inflammatory cytokines.

13.
J Transl Med ; 19(1): 172, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33902634

ABSTRACT

BACKGROUND: sarcopenia is a highly prevalent condition in elderly individuals which is characterized by loss of muscle mass and functions; recent results showed that it is also associated with inflammation. Rehabilitation protocols for sarcopenia are designed to improve physical conditions, but very scarce data are available on their effects on inflammation We verified whether in sarcopenic patients the inflammation is reduced by rehabilitation and investigated the biological correlates of such effect. METHODS: Twenty-one sarcopenic patients undergoing a specifically-designed rehabilitation program were enrolled in the study. Physical, cognitive and nutritional parameters, as well as the concentration of C-Reactive Protein (CRP), pro-and anti-inflammatory cytokines and cytokine production-modulating miRNAs were measured at the beginning (T0) and at end (30-days; T1) of the rehabilitation. RESULTS: Rehabilitation resulted in a significant improvement of physical and cognitive conditions; this was accompanied by a significant reduction of CRP (p = 0.04) as well as of IL-18 (p = 0.008) and IL-37 (p = 0.009) concentration. Notably, the concentration of miR-335-3p (p = 0.007) and miR-657, the two known post-transcriptional regulators of IL-37 production, was increased by the rehabilitation protocol. CONCLUSIONS: Results herein confirm that successful rehabilitation for sarcopenia results in a reduction of the inflammatory milieu, raise the possibility that IL-37 may be a key target to monitor the rehabilitation-associated improvement in sarcopenia, and suggest that this cytokine could be a therapeutic target in sarcopenic patients.


Subject(s)
Interleukin-1/genetics , MicroRNAs , Sarcopenia , Aged , C-Reactive Protein , Cytokines , Humans , Inflammation , MicroRNAs/genetics , Sarcopenia/rehabilitation
14.
Molecules ; 26(4)2021 Feb 11.
Article in English | MEDLINE | ID: mdl-33670164

ABSTRACT

Neurodegenerative diseases are chronic, progressive disorders that occur in the central nervous system (CNS). They are characterized by the loss of neuronal structure and function and are associated with inflammation. Inflammation of the CNS is called neuroinflammation, which has been implicated in most neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS). Much evidence indicates that these different conditions share a common inflammatory mechanism: the activation of the inflammasome complex in peripheral monocytes and in microglia, with the consequent production of high quantities of the pro-inflammatory cytokines IL-1ß and IL-18. Inflammasomes are a group of multimeric signaling complexes that include a sensor Nod-like receptor (NLR) molecule, the adaptor protein ASC, and caspase-1. The NLRP3 inflammasome is currently the best-characterized inflammasome. Multiple signals, which are potentially provided in combination and include endogenous danger signals and pathogens, trigger the formation of an active inflammasome, which, in turn, will stimulate the cleavage and the release of bioactive cytokines including IL-1ß and IL-18. In this review, we will summarize results implicating the inflammasome as a pivotal player in the pathogenesis of neurodegenerative diseases and discuss how compounds that hamper the activation of the NLRP3 inflammasome could offer novel therapeutic avenues for these diseases.


Subject(s)
Inflammasomes/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Neurodegenerative Diseases/genetics , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Humans , Interleukin-18/genetics , Interleukin-1beta/genetics , Multiple Sclerosis/genetics , Multiple Sclerosis/pathology , Neurodegenerative Diseases/pathology , Parkinson Disease/genetics , Parkinson Disease/pathology , Signal Transduction/genetics
15.
Front Immunol ; 11: 1390, 2020.
Article in English | MEDLINE | ID: mdl-32733460

ABSTRACT

Background: Butyric acid (BA) is a short-chain fatty acid (SCFA) with anti-inflammatory properties, which promotes intestinal barrier function. Medium-chain fatty acids (MCFA), including caproic acid (CA), promote TH1 and TH17 differentiation, thus supporting inflammation. Aim: Since most SCFAs are absorbed in the cecum and colon, the measurement of BA in peripheral blood could provide information on the health status of the intestinal ecosystem. Additionally, given the different immunomodulatory properties of BA and CA the evaluation of their serum concentration, as well as their ratio could be as a simple and rapid biomarker of disease activity and/or treatment efficacy in MS. Methods: We evaluated serum BA and CA concentrations, immune parameters, intestinal barrier integrity and the gut microbiota composition in patients with multiple sclerosis (MS) comparing result to those obtained in healthy controls. Results: In MS, the concentration of BA was reduced and that of CA was increased. Concurrently, the microbiota was depleted of BA producers while it was enriched in mucin-degrading, pro-inflammatory components. The reduced serum concentration of BA seen in MS patients correlated with alterations of the barrier permeability, as evidenced by the higher plasma concentrations of lipopolysaccharide and intestinal fatty acid-binding protein, and inflammation. Specifically, CA was positively associated with CD4+/IFNγ+ T lymphocytes, and the BA/CA ratio correlated positively with CD4+/CD25high/Foxp3+ and negatively with CD4+/IFNγ+ T lymphocytes. Conclusion: The gut microbiota dysbiosis found in MS is possibly associated with alterations of the SCFA/MCFA ratio and of the intestinal barrier; this could explain the chronic inflammation that characterizes this disease. SCFA and MCFA quantification could be a simple biomarker to evaluate the efficacy of therapeutic and rehabilitation procedures in MS.


Subject(s)
Dysbiosis/blood , Fatty Acids/blood , Gastrointestinal Microbiome , Multiple Sclerosis/blood , Multiple Sclerosis/etiology , Adult , Biodiversity , Biomarkers , Butyric Acid/blood , Caproates/blood , Chromatography, Liquid , Cytokines/metabolism , Disease Susceptibility , Female , Flow Cytometry , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Male , Middle Aged , Permeability , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Tandem Mass Spectrometry , Transcription Factors/metabolism
16.
Article in English | MEDLINE | ID: mdl-32862023

ABSTRACT

Short and medium fatty acids derived from either dietary sources, gut microbiota, and liver production might play a role in the modulation of metabolism and inflammation. The outcome of different autoimmune or inflammatory diseases could be related to microbiota composition and consequently fatty acids production. Their analytical detection, historically completed by GC, was herein investigated using a sensitive approach of LC-MS/MS with straightforward chemical derivatization, using 3-NPH, to the respective acylhydrazines. An isopropanol protein precipitation coupled to LC-MS/MS analysis allowed to separate and quantify butyric, valeric, hexanoic acid and their branched forms. The serum physiological ranges of short and medium chain fatty acids were determined in a heterogeneous healthy population (n = 54) from 18 to 85 years finding a concentration of 935.6 ±â€¯246.5 (butyric), 698.8 ±â€¯204.7 (isobutyric), 62.9 ±â€¯15.3 (valeric), 1155.0 ±â€¯490.4 (isovaleric) and 468.7 ±â€¯377.5 (hexanoic) ng/mL respectively (mean ±â€¯SD). As expected, the biological levels in human serum are reasonably wide-ranging depending on several factors such as body-weight, gut microbiome dysbiosis, gut permeability, cardiometabolic dysregulation, and diet.


Subject(s)
Chromatography, Liquid/methods , Fatty Acids/blood , Tandem Mass Spectrometry/methods , Adolescent , Adult , Aged , Aged, 80 and over , Fatty Acids/chemistry , Fatty Acids/isolation & purification , Female , Humans , Limit of Detection , Linear Models , Male , Middle Aged , Reproducibility of Results , Young Adult
17.
J Neuroinflammation ; 17(1): 174, 2020 Jun 06.
Article in English | MEDLINE | ID: mdl-32505187

ABSTRACT

BACKGROUND: Interleukin-33 is a cytokine endowed with pro- and anti-inflammatory properties that plays a still poorly defined role in the pathogenesis of a number of central nervous system (CNS) conditions including Alzheimer's disease (AD). We analyzed this cytokine and its decoy receptor sST2 in Alzheimer's disease (AD) and mild cognitive impairment (MCI). METHOD: IL-33 and sST2 were analyzed in serum and CSF of AD and MCI patients, comparing the results to those obtained in age-matched healthy controls (HC). Because of the ambiguous role of IL-33 in inflammation, the concentration of both inflammatory (IL-1ß and IL-6) and anti-inflammatory (IL-10) cytokines was analyzed as well in serum and cerebrospinal fluid (CSF) of the same individuals. Finally, the effect of IL-33 on in vitro Aß42-stimulated monocytes of AD, MCI, and HC individuals was examined. RESULTS: As compared to HC, (1) IL-33 was significantly decreased in serum and CSF of AD and MCI, (2) sST2 was increased in serum of AD and MCI but was undetectable in CSF, (3) serum and CSF IL-1ß concentration was significantly increased and that of IL-10 was reduced in AD and MCI, whereas no differences were observed in IL-6. In vitro addition of IL-33 to LPS+Aß 42-stimulated monocytes downregulated IL-1ß generation in MCI and HC, but not in AD, and stimulated IL-10 production in HC alone. IL-33 addition also resulted in a significant reduction of NF-kB nuclear translocation in LPS+Aß42-stimulated monocytes of HC alone. CONCLUSIONS: These data support the hypothesis that IL-33 plays a complex anti-inflammatory role that is lost in AD- and MCI-associated neuroinflammation; results herein also suggest a possible use of IL-33 as a novel therapeutic approach in AD and MCI.


Subject(s)
Alzheimer Disease/metabolism , Cognitive Dysfunction/metabolism , Interleukin-1 Receptor-Like 1 Protein/metabolism , Interleukin-33/metabolism , Aged , Aged, 80 and over , Biomarkers/analysis , Female , Humans , Male , Middle Aged
18.
Brain Behav Immun ; 88: 597-605, 2020 08.
Article in English | MEDLINE | ID: mdl-32335194

ABSTRACT

Activation of the NLRP3 inflammasome has been shown to play a major role in the neuroinflammation that accompanies Alzheimer's disease (AD); interventions that down regulate the NLRP3 inflammasome could thus be beneficial in AD. Parasite infections were recently shown to be associated with improved cognitive functions in Apolipoprotein E4 (ApoE4)-expressing members of an Amazonian tribe. We verified in an in vitro model whether Leishmania infantum infection could reduce NLRP3. Results obtained in an initial experimental model in which PBMC were LPS primed and nigericin-stimulated showed that L. infantum infection significantly reduced ASC-speck formation (i.e. intracellular inflammasome proteins assembly), as well as the production of activated caspase 5 and IL-1ß, but increased that of activated caspase 1 and IL-18. Moreover, L. infantum infection induced the generation of an anti-inflammatory milieu by suppressing the production of TNFα and increasing that of IL-10. These results were replicated when cells that had been LPS-primed were stimulated with Aß42 and infected with L. infantum. Results herein indicate that Leishmania infection favors an anti-inflammatory milieu, which includes the down-regulation of NLRP3 inflammasome activation, possibly to facilitate its survival inside host cells. A side effect of Leishmaniasis would be the hampering of neuroinflammation; this could play a protective role against AD development.


Subject(s)
Leishmaniasis , Amyloid beta-Peptides , Caspase 1 , Humans , Inflammasomes , Interleukin-1beta , Leishmania infantum , Leukocytes, Mononuclear , NLR Family, Pyrin Domain-Containing 3 Protein
20.
J Alzheimers Dis ; 72(2): 401-412, 2019.
Article in English | MEDLINE | ID: mdl-31594217

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is associated with the accumulation of amyloid-ß (Aß) within senile plaques in the brain and neuroinflammation, possibly driven by the activation of the NLRP3 inflammasome. Nucleoside reverse transcriptase inhibitors (NRTI) hamper the NLRP3 inflammasome assembly. OBJECTIVE: We utilized an in vitro model reproducing the Aß-driven inflammation seen in AD to analyze whether stavudine (D4T), a prototypical NRTI, modulates Aß-mediated inflammasome activation and the ability of macrophages to eliminate Aß via phagocytosis and autophagy. METHODS: THP-1-derived macrophages were stimulated in vitro with Aß42 or with Aß42 after LPS-priming in the presence/absence of D4T. NLRP3 and TREM2 expression was analyzed by RT-PCR; phagocytosis, as well as ASC-Speck formation, was analyzed by Amnis FlowSight Imaging; NLRP3-produced cytokines were quantified by ELISA and, finally, autophagy was analyzed by measuring p-ERK1/2, p-AKT, beclin, p70-S6Kinase, and Lamp by ELISA and western blot. RESULTS: IL-1ß, IL-18, and caspase-1 were increased whereas Aß phagocytosis and TREM2 were reduced in LPS+Aß42-stimulated cells. D4T reduced NLRP3 assembly as well as IL-18 and caspase-1 production, but did not affect IL-1ß production and TREM2 expression. Notably, whereas D4T reduced Aß phagocytosis, Aß autophagy by macrophages was stimulated by D4T, as witnessed by the down-modulation of ERK1/2 and AKT phosphorylation and the upregulation of beclin, LAMP, and p70-S6K, their downstream targets. CONCLUSION: In this in vitro model of AD, D4T reduces NLRP3 inflammasome-associated inflammation and stimulates Aß autophagy by macrophages. It will be interesting to verify the possibly beneficial effects of D4T in the clinical scenario.


Subject(s)
Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/pharmacology , Autophagy/drug effects , Inflammasomes/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , Reverse Transcriptase Inhibitors/pharmacology , Stavudine/pharmacology , Cells, Cultured , Cytokines/metabolism , Enzyme Activation/drug effects , Gene Expression Regulation/drug effects , Humans , MAP Kinase Signaling System/drug effects , Macrophages/drug effects , Membrane Glycoproteins/antagonists & inhibitors , Membrane Glycoproteins/biosynthesis , Phagocytosis/drug effects , Receptors, Immunologic/antagonists & inhibitors , Receptors, Immunologic/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...