Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Sci (Lond) ; 138(12): 741-756, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38895777

ABSTRACT

Periods of skeletal muscle disuse lead to rapid declines in muscle mass (atrophy), which is fundamentally underpinned by an imbalance between muscle protein synthesis (MPS) and muscle protein breakdown (MPB). The complex interplay of molecular mechanisms contributing to the altered regulation of muscle protein balance during disuse have been investigated but rarely synthesised in the context of humans. This narrative review discusses human models of muscle disuse and the ensuing inversely exponential rate of muscle atrophy. The molecular processes contributing to altered protein balance are explored, with a particular focus on growth and breakdown signalling pathways, mitochondrial adaptations and neuromuscular dysfunction. Finally, key research gaps within the disuse atrophy literature are highlighted providing future avenues to enhance our mechanistic understanding of human disuse atrophy.


Subject(s)
Muscle Proteins , Muscle, Skeletal , Muscular Atrophy , Humans , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Muscle Proteins/metabolism , Signal Transduction , Immobilization/adverse effects , Muscular Disorders, Atrophic/metabolism , Muscular Disorders, Atrophic/pathology , Muscular Disorders, Atrophic/physiopathology
2.
Age Ageing ; 51(10)2022 10 06.
Article in English | MEDLINE | ID: mdl-36315433

ABSTRACT

INTRODUCTION: Significant losses of muscle mass and function occur after major abdominal surgery. Neuromuscular electrical stimulation (NMES) has been shown to reduce muscle atrophy in some patient groups, but evidence in post-operative patients is limited. This study assesses the efficacy of NMES for attenuating muscle atrophy and functional declines following major abdominal surgery in older adults. METHODS: Fifteen patients undergoing open colorectal resection completed a split body randomised control trial. Patients' lower limbs were randomised to control (CON) or NMES (STIM). The STIM limb underwent 15 minutes of quadriceps NMES twice daily on post-operative days (PODs) 1-4. Ultrasound measurements of Vastus Lateralis cross-sectional area (CSA) and muscle thickness (MT) were made preoperatively and on POD 5, as was dynamometry to determine knee extensor strength (KES). Change in CSA was the primary outcome. All outcomes were statistically analysed using linear mixed models. RESULTS: NMES significantly reduced the loss of CSA (-2.52 versus -9.16%, P < 0.001), MT (-2.76 versus -8.145, P = 0.001) and KES (-10.35 versus -19.69%, P = 0.03) compared to CON. No adverse events occurred, and patients reported that NMES caused minimal or no discomfort and felt that ~90-minutes of NMES daily would be tolerable. DISCUSSION: NMES reduces losses of muscle mass and function following major abdominal surgery, and as such, may be the promising tool for post-operative recovery. This is important in preventing long-term post-operative dependency, especially in the increasingly frail older patients undergoing major abdominal surgery. Further studies should establish the efficacy of bilateral NMES for improving patient-centred outcomes.


Subject(s)
Electric Stimulation Therapy , Muscle Strength , Muscular Atrophy , Postoperative Complications , Quadriceps Muscle , Aged , Humans , Electric Stimulation , Electric Stimulation Therapy/adverse effects , Electric Stimulation Therapy/methods , Knee Joint , Muscle Strength/physiology , Muscular Atrophy/etiology , Muscular Atrophy/physiopathology , Muscular Atrophy/prevention & control , Quadriceps Muscle/diagnostic imaging , Quadriceps Muscle/physiology , Postoperative Care , Postoperative Complications/prevention & control , Colectomy/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL