Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Publication year range
1.
Immunol Rev ; 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39180430

ABSTRACT

Natural killer (NK) cells are innate immune effectors whose functions rely on receptors binding cytokines, recognizing self-molecules, or detecting danger signals expressed by virus-infected or tumor cells. The potent cytotoxic potential makes NK cells promising candidates for cancer immunotherapy. To enhance their activity strategies include cytokine administration, blocking of immune checkpoints, and designing of antibody-based NK cell engagers (NKCEs). NKCEs represent a cutting-edge approach to cancer therapy: they strengthen the NK-to-target cell interactions and optimize tumor killing, possibly overcoming the immunosuppressive tumor microenvironment. NK cells belong to the innate lymphoid cells (ILCs) and are categorized into different subsets also including cells with a memory-like phenotype: this complexity needs to be explored in the context of cancer immunotherapy, particularly when designing NKCEs. Two strategies to enhance NK cell activity in cancer patients can be adopted: activating patients' own NK cells versus the adoptive transfer of ex vivo activated NK cells. Furthermore, the capability of NKCEs to activate γδ T cells could have a significant synergistic effect in immunotherapy.

3.
PLoS Comput Biol ; 17(3): e1008870, 2021 03.
Article in English | MEDLINE | ID: mdl-33784299

ABSTRACT

The emerging tumor-on-chip (ToC) approaches allow to address biomedical questions out of reach with classical cell culture techniques: in biomimetic 3D hydrogels they partially reconstitute ex vivo the complexity of the tumor microenvironment and the cellular dynamics involving multiple cell types (cancer cells, immune cells, fibroblasts, etc.). However, a clear bottleneck is the extraction and interpretation of the rich biological information contained, sometime hidden, in the cell co-culture videos. In this work, we develop and apply novel video analysis algorithms to automatically measure the cytotoxic effects on human cancer cells (lung and breast) induced either by doxorubicin chemotherapy drug or by autologous tumor-infiltrating cytotoxic T lymphocytes (CTL). A live fluorescent dye (red) is used to selectively pre-stain the cancer cells before co-cultures and a live fluorescent reporter for caspase activity (green) is used to monitor apoptotic cell death. The here described open-source computational method, named STAMP (spatiotemporal apoptosis mapper), extracts the temporal kinetics and the spatial maps of cancer death, by localizing and tracking cancer cells in the red channel, and by counting the red to green transition signals, over 2-3 days. The robustness and versatility of the method is demonstrated by its application to different cell models and co-culture combinations. Noteworthy, this approach reveals the strong contribution of primary cancer-associated fibroblasts (CAFs) to breast cancer chemo-resistance, proving to be a powerful strategy to investigate intercellular cross-talks and drug resistance mechanisms. Moreover, we defined a new parameter, the 'potential of death induction', which is computed in time and in space to quantify the impact of dying cells on neighbor cells. We found that, contrary to natural death, cancer death induced by chemotherapy or by CTL is transmissible, in that it promotes the death of nearby cancer cells, suggesting the release of diffusible factors which amplify the initial cytotoxic stimulus.


Subject(s)
Apoptosis/physiology , Coculture Techniques/methods , T-Lymphocytes, Cytotoxic , Tumor Microenvironment/physiology , Cell Line, Tumor , Computational Biology , Fibroblasts/cytology , Fibroblasts/physiology , Humans , Kinetics , Microfluidic Analytical Techniques , Microscopy, Video , T-Lymphocytes, Cytotoxic/cytology , T-Lymphocytes, Cytotoxic/physiology
SELECTION OF CITATIONS
SEARCH DETAIL