Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
bioRxiv ; 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38405844

ABSTRACT

Protein functions generally depend on their assembly into complexes. During evolution, some complexes have transitioned from homomers encoded by a single gene to heteromers encoded by duplicate genes. This transition could occur without adaptive evolution through intermolecular compensatory mutations. Here, we experimentally duplicate and evolve an homodimeric enzyme to examine if and how this could happen. We identify hundreds of deleterious mutations that inactivate individual homodimers but produce functional enzymes when co-expressed as duplicated proteins that heterodimerize. The structure of one such heteromer reveals how both losses of function are buffered through the introduction of asymmetry in the complex that allows them to subfunctionalize. Constructive neutral evolution can thus occur by gene duplication followed by only one deleterious mutation per duplicate.

2.
bioRxiv ; 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37547018

ABSTRACT

Pain is a private experience observable through various verbal and non-verbal behavioural manifestations. Despite the importance of understanding the cerebral mechanisms underlying those manifestations, there is currently limited knowledge on the neural correlates of facial expression of pain. Here, we applied a brain decoding approach to functional magnetic resonance imaging (fMRI) data to predict the facial expression of pain during noxious heat stimulation in healthy volunteers. Results revealed the inability of previously developed pain neurosignatures to predict the facial expression of pain. We thus propose a Facial Expression of Pain Signature (FEPS) conveying distinctive information about the brain response to nociceptive stimulations with minimal overlap with other pain-relevant brain signatures. The FEPS provides a better characterization of the distributed cerebral representations of non-verbal pain communication. This underscores the complexity of pain phenomenology by reinforcing the view that neurosignatures conceived as biomarkers must be interpreted in relation to the specific pain manifestation predicted.

3.
Sci Rep ; 11(1): 21362, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34725391

ABSTRACT

The design of superior biologic therapeutics, including antibodies and engineered proteins, involves optimizing their specific ability to bind to disease-related molecular targets. Previously, we developed and applied the Assisted Design of Antibody and Protein Therapeutics (ADAPT) platform for virtual affinity maturation of antibodies (Vivcharuk et al. in PLoS One 12(7):e0181490, https://doi.org/10.1371/journal.pone.0181490 , 2017). However, ADAPT is limited to point mutations of hot-spot residues in existing CDR loops. In this study, we explore the possibility of wholesale replacement of the entire H3 loop with no restriction to maintain the parental loop length. This complements other currently published studies that sample replacements for the CDR loops L1, L2, L3, H1 and H2. Given the immense sequence space theoretically available to H3, we focused on the virtual grafting of over 5000 human germline-derived H3 sequences from the IGMT/LIGM database increasing the diversity of the sequence space when compared to using crystalized H3 loop sequences. H3 loop conformations are generated and scored to identify optimized H3 sequences. Experimental testing of high-ranking H3 sequences grafted into the framework of the bH1 antibody against human VEGF-A led to the discovery of multiple hits, some of which had similar or better affinities relative to the parental antibody. In over 75% of the tested designs, the re-designed H3 loop contributed favorably to overall binding affinity. The hits also demonstrated good developability attributes such as high thermal stability and no aggregation. Crystal structures of select re-designed H3 variants were solved and indicated that although some deviations from predicted structures were seen in the more solvent accessible regions of the H3 loop, they did not significantly affect predicted affinity scores.


Subject(s)
Antibodies/chemistry , Amino Acid Sequence , Antibodies/immunology , Complementarity Determining Regions/chemistry , Complementarity Determining Regions/immunology , Humans , Models, Molecular , Protein Aggregates , Protein Conformation , Protein Stability , Vascular Endothelial Growth Factor A/immunology
4.
ACS Omega ; 6(25): 16584-16591, 2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34235330

ABSTRACT

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) 3CL protease is a promising target for inhibition of viral replication by interaction with a cysteine residue (Cys145) at its catalytic site. Dalcetrapib exerts its lipid-modulating effect by binding covalently to cysteine 13 of a cholesteryl ester transfer protein. Because 12 free cysteine residues are present in the 3CL protease, we investigated the potential of dalcetrapib to inhibit 3CL protease activity and SARS-CoV-2 replication. Molecular docking investigations suggested that dalcetrapib-thiol binds to the catalytic site of the 3CL protease with a delta G value of -8.5 kcal/mol. Dalcetrapib inhibited both 3CL protease activity in vitro and viral replication in Vero E6 cells with IC50 values of 14.4 ± 3.3 µM and an EC50 of 17.5 ± 3.5 µM (mean ± SD). Near-complete inhibition of protease activity persisted despite 1000-fold dilution after ultrafiltration with a nominal dalcetrapib-thiol concentration of approximately 100 times below the IC50 of 14.4 µM, suggesting stable protease-drug interaction. The inhibitory effect of dalcetrapib on the SARS-CoV-2 3CL protease and viral replication warrants its clinical evaluation for the treatment of COVID-19.

5.
J Pestic Sci ; 46(1): 7-15, 2021 Feb 20.
Article in English | MEDLINE | ID: mdl-33746541

ABSTRACT

Reducing the use of broad-spectrum insecticides is one of the many challenges currently faced by insect pest management practitioners. For this reason, efforts are being made to develop environmentally benign pest-control products through bio-rational approaches that aim at disrupting physiological processes unique to specific groups of pests. Perturbation of hormonal regulation of insect development and reproduction is one such strategy. It has long been hypothesized that some enzymes in the juvenile hormone biosynthetic pathway of moths, butterflies and caterpillars (order Lepidoptera) display unique structural features that could be targeted for the development of Lepidoptera-specific insecticides, a promising avenue given the numerous agricultural and forest pests belonging to this order. Farnesyl diphosphate synthase, FPPS, is one such enzyme, with recent work suggesting that it has structural characteristics that may enable its selective inhibition. This review synthesizes current knowledge on FPPS and summarizes recent advances in its use as a target for insecticide development.

6.
Biomed Res Int ; 2020: 4832360, 2020.
Article in English | MEDLINE | ID: mdl-32382554

ABSTRACT

BACKGROUND: One Health is receiving attention for arbovirus infection prevention and control and for defining national "intersectoral" priorities. Increasing awareness of intersectoral priorities through multisectorial risk assessments (MRA) is promising, where data are not systematically shared between sectors. Towards this aim, the MediLabSecure project organized three MRA exercises (hereby called exercises): one on West Nile virus, one on Crimean-Congo haemorrhagic fever, and one on Rift Valley fever, assessing the added value of this approach. METHODS: The exercises relied on RA methodologies of international organisations. Country representatives of the human and animal virology, medical entomology, and public health sectors (hereby called "sectors") involved in the surveillance of vector-borne diseases participated in the exercises. Background documentation was provided before each exercise, and a guide was developed for the facilitators. All three exercises included technical and methodological presentations and a guided RA directed at bringing into play the different sectors involved. To assess the added value of the approach, each participant was asked to rank the level of perceived benefit of the multisectoral collaboration for each "risk question" included in the exercises. RESULTS: In total, 195 participants from 19 non-EU countries in the Mediterranean and Black Sea regions took part in the exercises. The participants assessed the multisectoral approach as valuable in analysing comprehensively the situation by having access to information and knowledge provided by each of the sectors involved. Sharing of information and discussion facilitated reaching a consensus on the level of risk in each country. CONCLUSIONS: Increasing awareness of intersectoral priorities, including cross-border ones, through MRA is relevant to reduce gaps due to unavailability of shared data and information. Given that six out of the ten threats to global health listed by WHO are occurring at the human-animal-environmental interfaces, comprehensive regional RA with a One Health approach made by national authorities can be a relevant added value for the global health security.


Subject(s)
Arbovirus Infections , Global Health , One Health , Animals , Arbovirus Infections/epidemiology , Arbovirus Infections/prevention & control , Humans , Risk Assessment
7.
J Biol Chem ; 295(26): 8708-8724, 2020 06 26.
Article in English | MEDLINE | ID: mdl-32371400

ABSTRACT

Mammalian acetylcholinesterase (AChE) is well-studied, being important in both cholinergic brain synapses and the peripheral nervous systems and also a key drug target for many diseases. In contrast, little is known about the structures and molecular mechanism of prokaryotic acetylcholinesterases. We report here the structural and biochemical characterization of ChoE, a putative bacterial acetylcholinesterase from Pseudomonas aeruginosa Analysis of WT and mutant strains indicated that ChoE is indispensable for P. aeruginosa growth with acetylcholine as the sole carbon and nitrogen source. The crystal structure of ChoE at 1.35 Å resolution revealed that this enzyme adopts a typical fold of the SGNH hydrolase family. Although ChoE and eukaryotic AChEs catalyze the same reaction, their overall structures bear no similarities constituting an interesting example of convergent evolution. Among Ser-38, Asp-285, and His-288 of the catalytic triad residues, only Asp-285 was not essential for ChoE activity. Combined with kinetic analyses of WT and mutant proteins, multiple crystal structures of ChoE complexed with substrates, products, or reaction intermediate revealed the structural determinants for substrate recognition, snapshots of the various catalytic steps, and the molecular basis of substrate inhibition at high substrate concentrations. Our results indicate that substrate inhibition in ChoE is due to acetate release being blocked by the binding of a substrate molecule in a nonproductive mode. Because of the distinct overall folds and significant differences of the active site between ChoE and eukaryotic AChEs, these structures will serve as a prototype for other prokaryotic acetylcholinesterases.


Subject(s)
Acetylcholinesterase/metabolism , Pseudomonas aeruginosa/enzymology , Acetylcholinesterase/chemistry , Catalytic Domain , Crystallography, X-Ray , Humans , Kinetics , Models, Molecular , Protein Conformation , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/chemistry , Pseudomonas aeruginosa/metabolism , Substrate Specificity
8.
J Biol Chem ; 295(14): 4709-4722, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32111738

ABSTRACT

Group A flavin-dependent monooxygenases catalyze the cleavage of the oxygen-oxygen bond of dioxygen, followed by the incorporation of one oxygen atom into the substrate molecule with the aid of NADPH and FAD. These flavoenzymes play an important role in many biological processes, and their most distinct structural feature is the choreographed motions of flavin, which typically adopts two distinct conformations (OUT and IN) to fulfill its function. Notably, these enzymes seem to have evolved a delicate control system to avoid the futile cycle of NADPH oxidation and FAD reduction in the absence of substrate, but the molecular basis of this system remains elusive. Using protein crystallography, size-exclusion chromatography coupled to multi-angle light scattering (SEC-MALS), and small-angle X-ray scattering (SEC-SAXS) and activity assay, we report here a structural and biochemical characterization of PieE, a member of the Group A flavin-dependent monooxygenases involved in the biosynthesis of the antibiotic piericidin A1. This analysis revealed that PieE forms a unique hexamer. Moreover, we found, to the best of our knowledge for the first time, that in addition to the classical OUT and IN conformations, FAD possesses a "sliding" conformation that exists in between the OUT and IN conformations. This observation sheds light on the underlying mechanism of how the signal of substrate binding is transmitted to the FAD-binding site to efficiently initiate NADPH binding and FAD reduction. Our findings bridge a gap currently missing in the orchestrated order of chemical events catalyzed by this important class of enzymes.


Subject(s)
Bacterial Proteins/chemistry , Mixed Function Oxygenases/chemistry , Streptomyces/enzymology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Biocatalysis , Crystallography, X-Ray , Flavin-Adenine Dinucleotide/chemistry , Flavin-Adenine Dinucleotide/metabolism , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , NADP/chemistry , NADP/metabolism , Oxidation-Reduction , Protein Binding , Protein Multimerization , Protein Structure, Tertiary , Pyridines/metabolism , Scattering, Small Angle , Substrate Specificity , X-Ray Diffraction
9.
MAbs ; 11(7): 1300-1318, 2019 10.
Article in English | MEDLINE | ID: mdl-31318308

ABSTRACT

Solution stability is an important factor in the optimization of engineered biotherapeutic candidates such as monoclonal antibodies because of its possible effects on manufacturability, pharmacology, efficacy and safety. A detailed atomic understanding of the mechanisms governing self-association of natively folded protein monomers is required to devise predictive tools to guide screening and re-engineering along the drug development pipeline. We investigated pairs of affinity-matured full-size antibodies and observed drastically different propensities to aggregate from variants differing by a single amino-acid. Biophysical testing showed that antigen-binding fragments (Fabs) from the aggregating antibodies also reversibly associated with equilibrium dissociation constants in the low-micromolar range. Crystal structures (PDB accession codes 6MXR, 6MXS, 6MY4, 6MY5) and bottom-up hydrogen-exchange mass spectrometry revealed that Fab self-association occurs in a symmetric mode that involves the antigen complementarity-determining regions. Subtle local conformational changes incurred upon point mutation of monomeric variants foster formation of complementary polar interactions and hydrophobic contacts to generate a dimeric Fab interface. Testing of popular in silico tools generally indicated low reliabilities for predicting the aggregation propensities observed. A structure-aggregation data set is provided here in order to stimulate further improvements of in silico tools for prediction of native aggregation. Incorporation of intermolecular docking, conformational flexibility, and short-range packing interactions may all be necessary features of the ideal algorithm.


Subject(s)
Antibodies, Monoclonal/chemistry , Complementarity Determining Regions/chemistry , Immunoglobulin Fab Fragments/chemistry , Antibodies, Monoclonal/genetics , Bioengineering , Complementarity Determining Regions/genetics , Dimerization , Humans , Immunoglobulin Fab Fragments/genetics , Mass Spectrometry , Mutation/genetics , Protein Aggregates , Protein Conformation , Protein Folding , Protein Stability , Stereoisomerism , Structure-Activity Relationship
10.
PLoS Negl Trop Dis ; 13(6): e0007314, 2019 06.
Article in English | MEDLINE | ID: mdl-31194743

ABSTRACT

BACKGROUND: The Mediterranean Basin is historically a hotspot for trade, transport, and migration. As a result, countries surrounding the Mediterranean Sea share common public health threats. Among them are vector-borne diseases, and in particular, mosquito-borne viral diseases are prime candidates as (re)emerging diseases and are likely to spread across the area. Improving preparedness and response capacities to these threats at the regional level is therefore a major issue. The implementation of entomological surveillance is, in particular, of utmost importance. Guidance in designing entomological surveillance systems is critical, and these systems may pursue different specific objectives depending on the disease. The purpose of the proposed review is to draw up guidelines for designing effective and sustainable entomological surveillance systems in order to improve preparedness and response. However, we make it clear that there is no universal surveillance system, so the thinking behind harmonisation is to define evidence-based standards in order to promote best practises, identify the most appropriate surveillance activities, and optimise the use of resources. Such guidance is aimed at policymakers and diverse stakeholders and is intended to be used as a framework for the implementation of entomological surveillance programmes. It will also be useful to collaborate and share information with health professionals involved in other areas of disease surveillance. Medical entomologists and vector control professionals will be able to refer to this report to advocate for tailored entomological surveillance strategies. The main threats targeted in this review are the vectors of dengue virus, chikungunya virus, Zika virus, West Nile virus, and Rift Valley fever virus. The vectors of all these arboviruses are mosquitoes. METHODS: Current knowledge on vector surveillance in the Mediterranean area is reviewed. The analysis was carried out by a collaboration of the medical entomology experts in the region, all of whom belong to the MediLabSecure network, which is currently funded by the European Union and represents an international effort encompassing 19 countries in the Mediterranean and Black Sea region. FINDINGS: Robust surveillance systems are required to address the globalisation of emerging arboviruses. The prevention and management of mosquito-borne viral diseases must be addressed in the prism of a One Health strategy that includes entomological surveillance as an integral part of the policy. Entomological surveillance systems should be designed according to the entomological and epidemiological context and must have well-defined objectives in order to effect a tailored and graduated response. We therefore rely on different scenarios according to different entomological and epidemiological contexts and set out detailed objectives of surveillance. The development of multidisciplinary networks involving both academics and public authorities will provide resources to address these health challenges by promoting good practises in surveillance (identification of surveillance aims, design of surveillance systems, data collection, dissemination of surveillance results, evaluation of surveillance activities) and through the sharing of effective knowledge and information. These networks will also contribute to capacity building and stronger collaborations between sectors at both the local and regional levels. Finally, concrete guidance is offered on the vector of the main arbovirus based on the current situation in the area.


Subject(s)
Disease Transmission, Infectious , Epidemiological Monitoring , Insect Vectors/growth & development , Insect Vectors/virology , Virus Diseases/transmission , Viruses/isolation & purification , Animals , Humans , Insect Vectors/classification , Mediterranean Region , Viruses/classification
11.
Parasit Vectors ; 11(1): 553, 2018 Oct 23.
Article in English | MEDLINE | ID: mdl-30352609

ABSTRACT

BACKGROUND: Identification of vectors is of prime importance in the field of medical entomology for both operational and research purposes. An external quality assessment of mosquito identification capacities was carried out within the MediLabSecure Network, which is composed of laboratories located in 19 countries close to the European Union around the Mediterranean and Black seas. METHODS: A set of blind samples consisting of 7 or 8 adult mosquitoes and 4 larvae was given to each participant laboratory. In all, 138 adult mosquitoes and 76 larvae of different species were distributed for genus and species identification. RESULTS: All identifications were exclusively morphology based. Overall, 81% of identifications were correct at the genus level, 64% at the species level. The results were highly varied among the 19 participating laboratories. The levels of correct identifications were: 100% (three laboratories), 90-95% (four laboratories), 50-75% (six laboratories) and < 50% (six laboratories). CONCLUSIONS: This evaluation showed the need to maintain efforts in capacity building and quality control in the field of medical entomology and, more specifically, in the morphological identification of the Culicidae.


Subject(s)
Culicidae/classification , Animals , Female , Laboratories/standards , Male , Quality Control
12.
Article in English | MEDLINE | ID: mdl-29534445

ABSTRACT

In the context of One Health, there is presently an effort to integrate surveillance of human, animal, entomological, and environmental sectors. This aims to strengthen the prevention of, and preparedness against, arbovirus infections, also in the light of environmental and climate changes that could increase the risk of transmission. However, criteria to define integrated surveillance, and to compare different systems, still need to be identified and tested. We conducted a scoping review to identify and examine surveillance systems for West Nile virus (WNV), chikungunya virus (CHKV), dengue virus (DENV), and Rift Valley fever virus (RVFV), which involve human, animal, entomological, and environmental sectors. We analyzed findings using a conceptual framework we developed for this purpose. The review highlights that the criteria proposed in the conceptual framework to describe integrated surveillance are consistently reported in the context of studies and programs related to integrated surveillance of the selected arboviral diseases. These criteria can facilitate the identification and description of operationalized One Health surveillance.


Subject(s)
Arbovirus Infections , Epidemiological Monitoring , One Health , Animals , Black Sea , Chikungunya virus , Dengue Virus , Humans , Mediterranean Region , West Nile Fever , West Nile virus
13.
Insect Biochem Mol Biol ; 92: 84-92, 2018 01.
Article in English | MEDLINE | ID: mdl-29183817

ABSTRACT

Farnesyl diphosphate synthase (FPPS) is an enzyme from the class of short chain (E)-prenyltransferases that catalyzes the condensation of two molecules of isopentenyl diphosphate (IPP, C5) with dimethylallyl diphosphate (DMAPP, C5) to generate the C15 product FPP. In insects, FPPS plays a key role in the biosynthesis of the morphogenetic and gonadotropic "juvenile hormone" (JH). Lepidopteran genomes encode two very distinct FPPS paralogs, one of which ("type-II") is expressed almost exclusively in the JH-producing glands, the corpora allata. This paralog has been hypothesized to display structural features that enable the binding of the bulkier precursors required for the biosynthesis of lepidopteran ethyl-branched JHs. Here, we report on the first crystal structures of an insect FPPS solved to date. Apo, ligand-bound, and inhibitor-bound structures of type-II FPPS (FPPS2) from the spruce budworm, Choristoneura fumiferana (Order: Lepidoptera), were obtained. Comparison of apo and inhibitor-bound enzymes revealed differences in both inhibitor binding and structural plasticity of CfFPPS2 compared to other FPPSs. Our data showed that IPP is not essential to the closure of the C-terminal tail. Ortho-substituted pyridinium bisphosphonates, previously shown to inhibit CfFPPS2, bound to the allylic site, as predicted; however, their alkyl groups were oriented towards the homoallylic binding site, with the bulkier propyl-substituted inhibitor penetrating deeply into the IPP binding pocket. The current study sheds light on the structural basis of substrate specificity of type-II FPPS of the spruce budworm. Through a comparison with other inhibitor-bound FPPSs, we propose several approaches to improve inhibitor selectivity and potency.


Subject(s)
Geranyltranstransferase/chemistry , Insect Proteins/chemistry , Moths/enzymology , Amino Acid Sequence , Animals , Binding Sites , Diphosphonates/metabolism , Moths/chemistry , Pyridinium Compounds/metabolism , Substrate Specificity
14.
BMC Public Health ; 16(1): 1219, 2016 12 03.
Article in English | MEDLINE | ID: mdl-27914465

ABSTRACT

In the alarming context of risk of Zika virus (ZIKV) transmission in the Euro-Mediterranean area, there is a need to examine whether capacities to detect, diagnose and notify ZIKV infections in the region are in place and whether ongoing capacity-building initiatives are filling existing gaps.The MediLabSecure network, created in 2014, comprises 55 laboratories of virology and medical entomology and 19 public health institutions in 19 countries in the Balkans, North-Africa, the Middle-East and the Black Sea regions. It aims to set up awareness, risk assessment, monitoring and control of emerging and re-emerging vector-borne viruses. We here examine the actions and strategies that MediLabSecure has been implementing and how they will contribute to the prevention and control of the ZIKV threat in the Euro-Mediterranean area.Capacity-building for arbovirus diagnostics is a major objective of the project and follows a methodological rather than disease-driven approach. This enables the implementation of laboratory trainings on techniques that are common to several arboviruses, including ZIKV, and putting into action appropriate diagnostic tools in the target region.Moreover, by its One Health approach and the interaction of its four sub-networks in human virology, animal virology, medical entomology and public health, MediLabSecure is fostering intersectoral collaboration, expertise and sharing of information. The resulting exchanges (methodological, communication and operational) across disciplines and across countries, dedicated research on intersectoral collaboration and increasing diagnostic capacities are providing new paths and tools to public health professionals to face emerging viral threats such as a ZIKV epidemic in the Euro-Mediterranean region.


Subject(s)
Communicable Diseases, Emerging/prevention & control , Insect Vectors/virology , Travel/statistics & numerical data , Zika Virus Infection/prevention & control , Zika Virus/pathogenicity , Aedes/pathogenicity , Africa, Northern , Animals , Balkan Peninsula , Global Health , Health Education/methods , Humans , Mediterranean Region , Middle East , Zika Virus Infection/transmission
15.
J Steroid Biochem Mol Biol ; 161: 54-72, 2016 07.
Article in English | MEDLINE | ID: mdl-26924584

ABSTRACT

Androgen-metabolizing enzymes convert cholesterol, a relatively inert molecule, into some of the most potent chemical messengers in vertebrates. This conversion involves thermodynamically challenging reactions catalyzed by P450 enzymes and redox reactions catalyzed by Aldo-Keto Reductases (AKRs). This review covers the structures of these enzymes with a focus on active site interactions and proposed mechanisms. Due to their role in a number of diseases, particularly in cancer, androgen-metabolizing enzymes have been targets of drug design. Hence we will also highlight how existing knowledge of structure is being used to this end.


Subject(s)
17-Hydroxysteroid Dehydrogenases/metabolism , 3-Hydroxysteroid Dehydrogenases/metabolism , Androgens/metabolism , Cytochrome P-450 Enzyme System/metabolism , Oxidoreductases/metabolism , 17-Hydroxysteroid Dehydrogenases/chemistry , 3-Hydroxysteroid Dehydrogenases/chemistry , Androgens/chemistry , Animals , Cytochrome P-450 Enzyme System/chemistry , Humans , Metabolic Networks and Pathways , Models, Molecular , Oxidoreductases/chemistry
16.
Transplantation ; 100(2): 344-54, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26757049

ABSTRACT

BACKGROUND: Hepatocyte transplantation has been proposed as an alternative to orthotopic liver transplantation to treat metabolic liver diseases. This approach requires preconditioning of the host liver to enhance engraftment of transplanted hepatocytes. Different methods are currently used in preclinical models: partial hepatectomy, portal ligature or embolization, and radiotherapy or chemotherapeutic drugs. However, these methods carry high risks of complications and are problematic for use in clinical practice. Here, we developed an innovative method called volumetric (distal, partial, and random) portal embolization (VPE), which preserves total liver volume. METHODS: Embolization was performed in the portal trunk of C57BL6 adult mice with polyester microspheres, to ensure a bilateral and distal distribution. The repartition of microspheres was studied by angiographic and histological analyses. Liver regeneration was evaluated by Ki67 labeling. Optimal conditions for VPE were determined, and the resulting regeneration was compared with that after partial hepatectomy (70%). Labeled adult hepatocytes were then transplanted, and engraftment was compared between embolized (n = 19) and nonembolized mice (n = 8). Engraftment was assessed in vivo and histologically by tracking labeled cells at day 5. RESULTS: The best volumetric embolization conditions, which resulted in the regeneration of 5% of total liver, were 8 × 10 ten-micron microspheres infused with a 29 G needle directly into the portal trunk at 3.3 µL/s. In these conditions, transplanted hepatocytes engraftment was significantly higher than that in control conditions (3 vs 0.65%). CONCLUSIONS: The VPE is a new, minimally invasive, and efficient technique to prepare the host liver for cell transplantation.


Subject(s)
Embolization, Therapeutic/methods , Hepatocytes/transplantation , Liver Regeneration , Liver/blood supply , Polyesters/administration & dosage , Portal Vein , Animals , Biomarkers/metabolism , Cell Survival , Cell Tracking , Female , Graft Survival , Hepatectomy/methods , Hepatocytes/metabolism , Hepatocytes/pathology , Injections, Intravenous , Ki-67 Antigen/metabolism , Liver/metabolism , Liver/pathology , Liver/physiopathology , Liver/surgery , Male , Mice, Inbred C57BL , Microspheres , Organ Size , Portal Vein/diagnostic imaging , Radiography , Time Factors
17.
Chem Sci ; 7(8): 4867-4874, 2016 Aug 01.
Article in English | MEDLINE | ID: mdl-30155134

ABSTRACT

Substrate salvage or recycling is common and important for primary metabolism in cells but is rare in secondary metabolism. Herein we report flavoenzyme CrmK-mediated shunt product recycling in the biosynthesis of caerulomycin A (CRM A 1), a 2,2'-bipyridine-containing natural product that is under development as a potent novel immunosuppressive agent. We demonstrated that the alcohol oxidase CrmK, belonging to the family of bicovalent FAD-binding flavoproteins, catalyzed the conversion of an alcohol into a carboxylate via an aldehyde. The CrmK-mediated reactions were not en route to 1 biosynthesis but played an unexpectedly important role by recycling shunt products back to the main pathway of 1. Crystal structures and site-directed mutagenesis studies uncovered key residues for FAD-binding, substrate binding and catalytic activities, enabling the proposal for the CrmK catalytic mechanism. This study provides the first biochemical and structural evidence for flavoenzyme-mediated substrate recycling in secondary metabolism.

18.
Opt Express ; 23(17): 22553-63, 2015 Aug 24.
Article in English | MEDLINE | ID: mdl-26368222

ABSTRACT

Coupling of light to and from integrated optical circuits has been recognized as a major practical challenge since the early years of photonics. The coupling is particularly difficult for high index contrast waveguides such as silicon-on-insulator, since the cross-sectional area of silicon wire waveguides is more than two orders of magnitude smaller than that of a standard single-mode fiber. Here, we experimentally demonstrate unprecedented control over the light coupling between the optical fiber and silicon chip by constructing the nanophotonic coupler with ultra-high coupling efficiency simultaneously for both transverse electric and transverse magnetic polarizations. We specifically demonstrate a subwavelength refractive index engineered nanostructure to mitigate loss and wavelength resonances by suppressing diffraction effects, enabling a coupling efficiency over 92% (0.32 dB) and polarization independent operation for a broad spectral range exceeding 100 nm.

19.
Transplantation ; 99(1): 36-40, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25340599

ABSTRACT

INTRODUCTION: Hepatocyte transplantation could be an alternative to liver transplantation for the treatment of metabolic diseases. However, rodent models have shown that engraftment of transplanted cells in the liver is low and requires deposition of cells in hepatic sinusoids. Splanchnic vasodilatators improved hepatocyte engraftment in a rat model. Therefore, we investigated the effect of glyceryl trinitrate (GTN) on the efficacy of cell engraftment and on liver repopulation in the mdr2-knockout mouse, a model for progressive familial intrahepatic cholestasis type 3. METHODS: Congenic normal mdr2 (+/+) hepatocytes were isolated by two-step collagenase perfusion and transplanted into mdr2(-/-) mice livers through the portal vein in the presence or absence of GTN. Liver repopulation was assessed by immunohistochemistry, and transplanted hepatocyte function was assessed at different times after transplantation by measurement of biliary lipid secretion and quantification of fibrosis. RESULTS: The number of engrafted cells in GTN-treated mice was significantly higher than that in control mice, and transplanted hepatocytes were found in a greater number of distal sinusoids. Levels of phospholipid secretion were significantly higher than those in the control group 3 months after hepatocyte transplantation (18.3 ± 2.3 vs. 5.2 ± 3.9 nmol/min/100 g, P < 0.0001), and the ratio of phospholipids to bile salt was greater (6.8 ± 1.3 vs. 3.2 ± 1.6, P = 0.03). The percentage area of liver fibrosis was also significantly reduced in GTN-treated mice (5.7% ± 2.3% vs. 12.4% ± 2.9%, P = 0.016). CONCLUSION: The use of GTN improves hepatocyte engraftment and correction of metabolic disease in mdr2 (-/-) mice. This approach might be beneficial in hepatocyte transplantation for the treatment of patients with liver diseases.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B/deficiency , Cholestasis, Intrahepatic/surgery , Hepatocytes/drug effects , Hepatocytes/transplantation , Liver Transplantation/methods , Nitroglycerin/pharmacology , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , Animals , Bile Acids and Salts/metabolism , Cell Proliferation/drug effects , Cells, Cultured , Cholestasis, Intrahepatic/genetics , Cholestasis, Intrahepatic/metabolism , Disease Models, Animal , Hepatocytes/metabolism , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Liver Cirrhosis/surgery , Male , Mice, Knockout , Phospholipids/metabolism , Time Factors , ATP-Binding Cassette Sub-Family B Member 4
20.
Opt Express ; 22(11): 13507-14, 2014 Jun 02.
Article in English | MEDLINE | ID: mdl-24921544

ABSTRACT

We outline a full-vectorial three-dimensional multi-mode matching technique in a cylindrical coordinate system that addresses the mutual coupling among multiple modes co-propagating in a perturbed whispering gallery mode microcavity. In addition to its superior accuracy in respect to our previously implemented single-mode matching technique, this current technique is suitable for modelling waveguide-to-cavity coupling where the influence of multi-mode coupling is non-negligible. Using this methodology, a robust scheme for hybrid integration of a microcavity onto a silicon-on-insulator platform is proposed.

SELECTION OF CITATIONS
SEARCH DETAIL
...