Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Org Chem ; 89(4): 2343-2350, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38284895

ABSTRACT

This work describes the possibility to combine multicomponent chemistry and multienzymes cascade transformations in a unique reactive framework to yield highly functionalized 1,4-benzoxazines under favorable heterogeneous conditions. The synthetic scheme involved the generation in situ of electrophilic reactive quinone intermediates of tyrosol esters catalyzed by lipase M and tyrosinase followed by nucleophilic 1,6-Michael addition of selected α-amino acid methyl esters, and successive intramolecular lactonization and aromatization processes. The immobilization of the multienzymes cascade on electroactive lignin nanoparticles improved the sustainability and recyclability of the overall system.

2.
Int J Mol Sci ; 24(10)2023 May 20.
Article in English | MEDLINE | ID: mdl-37240391

ABSTRACT

A dual-target strategy was designed for the application of lignin nanoparticles in the lipase mediated biosynthesis of novel 3-O-ethyl-L-ascorbyl-6-ferulate and 3-O-ethyl-L-ascorbyl-6-palmitate and in their successive solvent-shift encapsulation in order to improve stability and antioxidant activity against temperature and pH-dependent degradation. The loaded lignin nanoparticles were fully characterized in terms of kinetic release, radical scavenging activity and stability under pH 3 and thermal stress (60 °C), showing improved antioxidant activity and high efficacy in the protection of ascorbic acid esters from degradation.


Subject(s)
Antioxidants , Ascorbic Acid , Ascorbic Acid/chemistry , Lignin , Esters , Lipase/metabolism
3.
ACS Omega ; 7(42): 37070-37077, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36312404

ABSTRACT

Sunscreen filters may be degraded after prolonged UV exposure with loss of their shielding property and generation of harmful radical species. They are contained in cosmetic formulations in high concentrations, so the improvement of photostability is of relevance for safety concerns. We report here that lignin nanoparticles are sustainable carriers and photostabilizers of two common UV chemical filters, namely, avobenzone and octyl methoxycinnamate. These compounds have been encapsulated by nanoprecipitation into kraft lignin nanoparticles using eco-certified dimethyl isosorbide as a primary solvent and deionized water as an antisolvent. After the encapsulation, both compounds significantly prolonged the half-life stability against UV irradiation. The stabilizing properties of lignin nanoparticles were further improved by coencapsulation of avobenzone and octyl methoxycinnamate with hydroxytyrosol, a natural phenol with antioxidant activity recovered from olive oil wastes and characterized by skin regenerative properties.

4.
Biomacromolecules ; 23(8): 3154-3164, 2022 08 08.
Article in English | MEDLINE | ID: mdl-35877659

ABSTRACT

Lignin nanoparticles containing saccharides from fishery wastes were prepared as sustainable biofillers for advanced materials. Organosolv lignin and Kraft lignin were used as polyphenol components in association with chitosan and chitooligosaccharides. The chemophysical and biological activities of lignin/saccharide nanoparticles, such as UV-shielding, antioxidant, and antimicrobial activities, were found to be dependent on both molecular weight and deacetylation degree of saccharides, with the best performance being obtained in the presence of low-molecular-weight and highly deacetylated chitooligosaccharides. In addition, chitooligosaccharides showed a synergistic antioxidant effect with lignins, associated with antimicrobial activity against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive).


Subject(s)
Anti-Infective Agents , Nanoparticles , Anti-Bacterial Agents , Anti-Infective Agents/pharmacology , Antioxidants/pharmacology , Chitin , Escherichia coli , Fisheries , Lignin/pharmacology
5.
Int J Mol Sci ; 23(11)2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35682916

ABSTRACT

The overproduction of eumelanin leads to a panel of unaesthetic hyper-pigmented skin diseases, including melasma and age spots. The treatment of these diseases often requires the use of tyrosinase inhibitors, which act as skin whitening agents by inhibiting the synthesis of eumelanin, with harmful side effects. We report here that laccase from Trametes versicolor in association with a cocktail of natural phenol redox mediators efficiently degraded eumelanin from Sepia officinalis, offering an alternative procedure to traditional whitening agents. Redox mediators showed a synergistic effect with respect to their single-mediator counterpart, highlighting the beneficial role of the cocktail system. The pro-oxidant DHICA sub-units of eumelanin were degraded better than the DHI counterpart, as monitored by the formation of pyrrole-2,3,5-tricarboxylic acid (PTCA) and pyrrole-2,3-dicarboxylic acid (PDCA) degradation products. The most effective laccase-mediated cocktail system was successively applied in a two-component prototype of a topical whitening cream, showing high degradative efficacy against eumelanin.


Subject(s)
Laccase , Skin Lightening Preparations , Laccase/metabolism , Melanins/metabolism , Skin Lightening Preparations/pharmacology , Trametes/metabolism
6.
Int J Mol Sci ; 23(2)2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35055101

ABSTRACT

We report here the synthesis of novel thymine biomimetic photo-adducts bearing an alkane spacer between nucleobases and characterized by antimelanoma activity against two mutated cancer cell lines overexpressing human Topoisomerase 1 (TOP1), namely SKMEL28 and RPMI7951. Among them, Dewar Valence photo-adducts showed a selectivity index higher than the corresponding pyrimidine-(6-4)-pyrimidone and cyclobutane counterpart and were characterized by the highest affinity towards TOP1/DNA complex as evaluated by molecular docking analysis. The antimelanoma activity of novel photo-adducts was retained after loading into UV photo-protective lignin nanoparticles as stabilizing agent and efficient drug delivery system. Overall, these results support a combined antimelanoma and UV sunscreen strategy involving the use of photo-protective lignin nanoparticles for the controlled release of thymine dimers on the skin followed by their sacrificial transformation into photo-adducts and successive inhibition of melanoma and alert of cellular UV machinery repair pathways.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Biological Mimicry , Drug Carriers/chemistry , Lignin , Nanoparticles , Thymine/chemistry , Biomimetics , Cell Line, Tumor , DNA Damage/drug effects , Drug Delivery Systems , Humans , Lignin/chemistry , Models, Molecular , Molecular Conformation , Molecular Structure , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Photochemistry , Pyrimidine Dimers/chemistry , Solvents , Spectrum Analysis , Structure-Activity Relationship , Ultraviolet Rays
7.
ACS Omega ; 6(33): 21444-21456, 2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34471747

ABSTRACT

Lignin nanoparticles (LNPs) are applied in several industrial applications. The nanoprecipitation of LNPs is fast and inexpensive but currently still limited to the use of hazardous organic solvents, making it difficult to apply them on a large scale. Here, we report a scalable nanoprecipitation procedure for the preparation of colloidal lignin nanoparticles (cLNPs) by the use of the green solvents dimethylisosorbide and isopropylidene glycerol. Irrespective of the experimental conditions, cLNPs showed higher UV absorbing properties and radical scavenging activity than parent LNPs and raw lignin. cLNPs were successively used in the preparation of eco-friendly sunscreen formulations (SPF 15, 30, and 50+, as evaluated by the COLIPA assay), which showed high UV-shielding activity even in the absence of synthetic boosters (microplastics) and physical filters (TiO2 and ZnO). Biological assays on human HaCaT keratinocytes and human skin equivalents demonstrated the absence of cytotoxicity and genotoxicity, associated with an optimal protection of the skin from UV-A damage.

8.
Antioxidants (Basel) ; 10(2)2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33578879

ABSTRACT

Green, biocompatible, and biodegradable antioxidants represent a milestone in cosmetic and cosmeceutical applications. Lignin is the most abundant polyphenol in nature, recovered as a low-cost waste from the pulp and paper industry and biorefinery. This polymer is characterized by beneficial physical and chemical properties which are improved at the nanoscale level due to the emergence of antioxidant and UV shielding activities. Here we review the use of lignin nanoparticles in cosmetic and cosmeceutical applications, focusing on sunscreen and antiaging formulations. Advances in the technology for the preparation of lignin nanoparticles are described highlighting structure activity relationships.

9.
RSC Adv ; 10(48): 29031-29042, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-35520043

ABSTRACT

Lignin nanoparticles (LNPs) acted as a renewable and efficient platform for the immobilization of horseradish peroxidase (HRP) and glucose oxidase (GOX) by a layer by layer procedure. The use of concanavalin A as a molecular spacer ensured the correct orientation and distance between the two enzymes as confirmed by Förster resonance energy transfer measurement. Layers with different chemo-physical properties tuned in a different way the activity and kinetic parameters of the enzymatic cascade, with cationic lignin performing as the best polyelectrolyte in the retention of the optimal Con A aggregation state. Electrochemical properties, temperature and pH stability, and reusability of the novel systems have been studied, as well as their capacity to perform as colorimetric biosensors in the detection of glucose using ABTS and dopamine as chromogenic substrates. A boosting effect of LNPs was observed during cyclovoltammetry analysis. The limit of detection (LOD) was found to be better than, or comparable to, that previously reported for other HRP-GOX immobilized systems, the best results being again obtained in the presence of a cationic lignin polyelectrolyte. Thus renewable lignin platforms worked as smart and functional devices for the preparation of green biosensors in the detection of glucose.

10.
Biomacromolecules ; 20(5): 1975-1988, 2019 05 13.
Article in English | MEDLINE | ID: mdl-30925212

ABSTRACT

Reactive lignin nanocapsules catalyze a pigmentation reaction to furnish an innovative type of sustainable polyvalent bioink. In this nanodevice, the pigment, vehicle, binder, and additive are included in a single confined spherical space. Bioinks with different shades of color, black, gray, yellow-like, pink-like, and red/brown hues, have been prepared by selecting the reactants and the pigmentation process. Lignin nanocapsules play multiple functions in the support and activation of the enzyme necessary for the synthesis of pigments. Lignin nanocapsules protected the melanin pigment from alkaline and UV-degradation treatment.


Subject(s)
Ink , Laccase/metabolism , Lignin/analogs & derivatives , Melanins/chemistry , Monophenol Monooxygenase/metabolism , Nanocapsules/chemistry , Laccase/chemistry , Melanins/metabolism , Monophenol Monooxygenase/chemistry
11.
Biomacromolecules ; 19(9): 3883-3893, 2018 09 10.
Article in English | MEDLINE | ID: mdl-30088918

ABSTRACT

Microcapsules and nanocapsules based on the contemporary presence of sulfonate lignin and tannic acid have been prepared by the layer-by-layer procedure, using MnCO3 or organosolv lignin as core templates, and polydiallyldimethylammonium chloride or chitosan as positive charged supporting layers. Nanocapsules and microcapsules of mixed polyphenols showed antioxidant activity, UV-shielding properties, and electrochemical responsiveness, higher than that in homopolymer nanocapsule counterparts and of the native polyphenols, suggesting the presence of synergistic effects between the two components. The presence of UV-visible bathochromic shift suggested the formation of J-aggregates characterized by an orientation of the adjacent phenolic rings parallel to the longitudinal direction of the layer, with a head-to-tail like arrangement. Moreover, nanocapsules of mixed polyphenols showed an aggregation state higher than that observed in references, the specific morphology of their surface being dependent on the structural arrangement of the different components.


Subject(s)
Antioxidants/administration & dosage , Capsules/chemistry , Nanocapsules/chemistry , Radiation-Protective Agents/administration & dosage , Capsules/chemical synthesis , Free Radicals/chemistry , Lignin/chemistry , Polyphenols/chemistry , Tannins/chemistry , Ultraviolet Rays
12.
Nanomaterials (Basel) ; 8(6)2018 Jun 15.
Article in English | MEDLINE | ID: mdl-29914085

ABSTRACT

Sustainable catalysts for the oxidation of phenol derivatives under environmentally friendly conditions were prepared by the functionalization of lignin nanoparticles with tyrosinase. Lignin, the most abundant polyphenol in nature, is the main byproduct in the pulp and paper manufacturing industry and biorefinery. Tyrosinase has been immobilized by direct adsorption, encapsulation, and layer-by-layer deposition, with or without glutaraldehyde reticulation. Lignin nanoparticles were found to be stable to the tyrosinase activity. After the enzyme immobilization, they showed a moderate to high catalytic effect in the synthesis of catechol derivatives, with the efficacy of the catalyst being dependent on the specific immobilization procedures.

13.
ACS Omega ; 2(6): 2515-2523, 2017 Jun 30.
Article in English | MEDLINE | ID: mdl-30023668

ABSTRACT

The treatment of propolis and poplar bud exudates with laccase from Trametes versicolor and 2,2,6,6-tetramethyl-1-piperidinyloxy free radical increased the antioxidant activity, as evaluated by the 2,2'-diphenyl picrylhydrazyl (DPPH)- and t-butyl-OOH-induced DNA breakage comet assay analyses. The effect was highest for shorter reaction times. Propolis showed the highest antioxidant activity in the DPPH test, whereas poplar bud exudates were more active in reducing the t-butyl-OOH-induced lesions in the Chinese hamster ovary cell line. Even if the concentration of polyphenols decreased during the oxidation, the formation of low-molecular-weight phenols phloroglucinol 4 (1,3,5-trihydroxy benzene), hydroquinone 5 (1,4-dihydroxy benzene), and catechol 6 (1,2-dihydroxy benzene), characterized by the radical-scavenging activity, can account for the observed increase in the antioxidant activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...