Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 11(23): e2400734, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38622892

ABSTRACT

Heavy-metal-free III-V colloidal quantum dots (QDs) exhibit promising attributes for application in optoelectronics. Among them, InAs QDs are demonstrating excellent optical performance with respect to absorption and emission in the near-infrared spectral domain. Recently, InAs QDs attained a substantial improvement in photoluminescence quantum yield, achieving 70% at a wavelength of 900 nm through the strategic overgrowth of a thick ZnSe shell atop the InAs core. In the present study, light-emitting diodes (LEDs) based on this type of InAs/ZnSe QDs are fabricated, reaching an external quantum efficiency (EQE) of 13.3%, a turn-on voltage of 1.5V, and a maximum radiance of 12 Wsr-1m-2. Importantly, the LEDs exhibit an extensive emission dynamic range, characterized by a nearly linear correlation between emission intensity and current density, which can be attributed to the efficient passivation provided by the thick ZnSe shell. The obtained results are comparable to state-of-the-art PbS QD LEDs. Furthermore, it should be stressed not only that the fabricated LEDs are fully RoHS-compliant but also that the emitting InAs QDs are prepared via a synthetic route based on a non-pyrophoric, cheap, and commercially available as precursor, namely tris(dimethylamino)-arsine.

2.
Rep Prog Phys ; 84(1): 012401, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33355315

ABSTRACT

Artificial intelligence (AI) is the most important new methodology in scientific research since the adoption of quantum mechanics and it is providing exciting results in numerous fields of science and technology. In this review we summarize research and discuss future opportunities for AI in the domains of photonics, nanophotonics, plasmonics and photonic materials discovery, including metamaterials.

3.
Adv Mater ; 31(14): e1807083, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30773719

ABSTRACT

A variety of alternative plasmonic and dielectric material platforms-among them nitrides, semiconductors, and conductive oxides-have come to prominence in recent years as means to address the shortcomings of noble metals (including Joule losses, cost, and passive character) in certain nanophotonic and optical-frequency metamaterial applications. Here, it is shown that chalcogenide semiconductor alloys offer a uniquely broad pallet of optical properties, complementary to those of existing material platforms, which can be controlled by stoichiometric design. Using combinatorial high-throughput techniques, the extraordinary epsilon-near-zero, plasmonic, and low/high-index characteristics of Bi:Sb:Te alloys are explored. Depending upon composition they can, for example, have plasmonic figures of merit higher than conductive oxides and nitrides across the entire UV-NIR range, and higher than gold below 550 nm; present dielectric figures of merit better than conductive oxides at near-infrared telecommunications wavelengths; and exhibit record-breaking refractive indices as low as 0.7 and as high as 11.5.

4.
Nano Lett ; 19(3): 1643-1648, 2019 03 13.
Article in English | MEDLINE | ID: mdl-30721072

ABSTRACT

Photonic materials with tunable and switchable ultraviolet (UV) to high-energy visible (HEV) optical properties may benefit applications such as sensing, high-density optical memory, beam-steering, adaptive optics, and light modulation. Here, for the first time we demonstrate a nonvolatile switchable dielectric metamaterial operating in the UV-HEV spectral range. Nanograting metamaterials in a layered composite of low-loss ZnS/SiO2 and the chalcogenide phase-change medium germanium-antimony-telluride (Ge2Sb2Te5 or GST) exhibit reflection resonances at UV-HEV wavelengths that are substantially modified by light-induced (amorphous-crystalline) phase transitions in the chalcogenide layer. Despite the presence of the lossy GST, resonance quality factors up to Q ∼ 15 are ensured by the transparency (low losses) of ZnS/SiO2 in the UV-HEV spectral range and values of Q increase as the refractive index of Ge2Sb2Te5 decreases, upon crystallization. Notably, however, this switching leaves resonance spectral positions unchanged.

5.
Opt Express ; 26(16): 20861-20867, 2018 Aug 06.
Article in English | MEDLINE | ID: mdl-30119392

ABSTRACT

Amorphous bismuth telluride (Bi:Te) provides a composition-dependent, CMOS-compatible alternative material platform for plasmonics in the ultraviolet-visible spectral range. Thin films of the chalcogenide semiconductor are found, using high-throughput physical vapor deposition and characterization techniques, to exhibit a plasmonic response (a negative value of the real part of relative permittivity) over a band of wavelengths extending from ~250 nm to between 530 and 978 nm, depending on alloy composition (Bi:Te at% ratio). The plasmonic response is illustrated via the fabrication of subwavelength period nano-grating metasurfaces, which present strong, period-dependent plasmonic absorption resonances in the visible range, manifested in the perceived color of the nanostructured domains in reflection.

SELECTION OF CITATIONS
SEARCH DETAIL