Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Front Oncol ; 14: 1402651, 2024.
Article in English | MEDLINE | ID: mdl-38826788

ABSTRACT

Introduction: CNSide is a platform that detects and characterizes tumor cells in the cerebrospinal fluid (CSF) of patients with leptomeningeal disease (LMD). The platform was validated per College of American Pathologists (CAP) and Clinical Laboratories Improvement Amendment (CLIA) guidelines and run as a commercial Laboratory Developed Test (LDT) at Biocept in San Diego, CA. The platform allows CSF tumor cell (CSF-TC) enumeration and biomarker characterization by fluorescent in situ hybridization (FISH). Methods: We performed a multicenter retrospective chart review of HER2 FISH CNSide test results that were commercially ordered on 26 patients by physicians for LMD breast cancer patients between April 2020 and October 2022. Results: We show that HER2 is amplified on CSF tumor cells in 62% (16/26) of LMD breast cancer patients. 10/26 (38%) patients had discordant HER2-positivity between the primary tumor tissue and CSF-TC; of these, 35% (9/26) of the patients displayed HER2 amplification on the CSF-TCs, however were categorized as HER2 negative on the primary tumor. Of the 27% (7/26) patients with a HER2 positive primary tumor, one patient showed a HER2 negative LMD tumor. Two patients, 8% (2/26) had a HER2 equivocal primary tumor; of these, one demonstrated a HER2 negative, and one a HER2 positive LMD tumor. Serial analysis (at least 4 longitudinal tests) of HER2 status of the CSF-TC throughout therapy was available for 14 patients and demonstrated that HER2 status of the LMD changed in 29% (4/14) during their treatment course and impacted care decisions. Conclusions: Our data suggests that CSF-TC HER2 FISH analysis in LMD breast cancer patients may be discordant to the primary tumor sample and the discovery of HER2 positivity in the CSF may open doors to anti-HER2 targeted therapy options for LMD patients.

2.
Front Radiol ; 4: 1345465, 2024.
Article in English | MEDLINE | ID: mdl-38562528

ABSTRACT

Purpose: Conventional contrast-enhanced MRI is currently the primary imaging technique used to evaluate radiation treatment response in meningiomas. However, newer perfusion-weighted MRI techniques, such as 3D pseudocontinuous arterial spin labeling (3D pCASL) MRI, capture physiologic information beyond the structural information provided by conventional MRI and may provide additional complementary treatment response information. The purpose of this study is to assess 3D pCASL for the evaluation of radiation-treated meningiomas. Methods: Twenty patients with meningioma treated with surgical resection followed by radiation, or by radiation alone, were included in this retrospective single-institution study. Patients were evaluated with 3D pCASL and conventional contrast-enhanced MRI before and after radiation (median follow up 6.5 months). Maximum pre- and post-radiation ASL normalized cerebral blood flow (ASL-nCBF) was measured within each meningioma and radiation-treated meningioma (or residual resected and radiated meningioma), and the contrast-enhancing area was measured for each meningioma. Wilcoxon signed-rank tests were used to compare pre- and post-radiation ASL-nCBF and pre- and post-radiation area. Results: All treated meningiomas demonstrated decreased ASL-nCBF following radiation (p < 0.001). Meningioma contrast-enhancing area also decreased after radiation (p = 0.008) but only for approximately half of the meningiomas (9), while half (10) remained stable. A larger effect size (Wilcoxon signed-rank effect size) was seen for ASL-nCBF measurements (r = 0.877) compared to contrast-enhanced area measurements (r = 0.597). Conclusions: ASL perfusion may provide complementary treatment response information in radiation-treated meningiomas. This complementary information could aid clinical decision-making and provide an additional endpoint for clinical trials.

3.
Neurooncol Adv ; 5(1): vdad031, 2023.
Article in English | MEDLINE | ID: mdl-37114245

ABSTRACT

Background: Laser interstitial thermal therapy (LITT) in the setting of post-SRS radiation necrosis (RN) for patients with brain metastases has growing evidence for efficacy. However, questions remain regarding hospitalization, local control, symptom control, and concurrent use of therapies. Methods: Demographics, intraprocedural data, safety, Karnofsky performance status (KPS), and survival data were prospectively collected and then analyzed on patients who consented between 2016-2020 and who were undergoing LITT for biopsy-proven RN at one of 14 US centers. Data were monitored for accuracy. Statistical analysis included individual variable summaries, multivariable Fine and Gray analysis, and Kaplan-Meier estimated survival. Results: Ninety patients met the inclusion criteria. Four patients underwent 2 ablations on the same day. Median hospitalization time was 32.5 hours. The median time to corticosteroid cessation after LITT was 13.0 days (0.0, 1229.0) and cumulative incidence of lesional progression was 19% at 1 year. Median post-procedure overall survival was 2.55 years [1.66, infinity] and 77.1% at one year as estimated by KaplanMeier. Median KPS remained at 80 through 2-year follow-up. Seizure prevalence was 12% within 1-month post-LITT and 7.9% at 3 months; down from 34.4% within 60-day prior to procedure. Conclusions: LITT for RN was not only again found to be safe with low patient morbidity but was also a highly effective treatment for RN for both local control and symptom management (including seizures). In addition to averting expected neurological death, LITT facilitates ongoing systemic therapy (in particular immunotherapy) by enabling the rapid cessation of steroids, thereby facilitating maximal possible survival for these patients.

4.
BMJ Case Rep ; 16(3)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36898710

ABSTRACT

Autoimmune glial fibrillar acidic protein (GFAP) astrocytopathy is a rare autoimmune neuroinflammatory disorder that affects the central nervous system. We present a case of GFAP astrocytopathy in a middle-aged male who presented with constitutional symptoms, encephalopathy and lower extremity weakness and numbness. Initially MRI of the spine was normal, but he subsequently developed longitudinally extensive myelitis and meningoencephalitis. Workup for infectious aetiologies was negative and the patient's clinical course worsened despite broad antimicrobial coverage. Ultimately, he was found to have anti-GFAP antibodies in his cerebral spinal fluid consistent with GFAP astrocytopathy. He was treated with steroids and plasmapheresis with clinical and radiographic improvement. This case demonstrates the temporal evolution of myelitis on MRI in a case of steroid-refractory GFAP astrocytopathy.


Subject(s)
Meningoencephalitis , Myelitis , Middle Aged , Humans , Male , Glial Fibrillary Acidic Protein , Astrocytes , Brain/metabolism , Autoantibodies
5.
J Clin Oncol ; 41(3): 618-628, 2023 01 20.
Article in English | MEDLINE | ID: mdl-36288512

ABSTRACT

PURPOSE: Patients with progressive or recurrent meningiomas have limited systemic therapy options. Focal adhesion kinase (FAK) inhibition has a synthetic lethal relationship with NF2 loss. Given the predominance of NF2 mutations in meningiomas, we evaluated the efficacy of GSK2256098, a FAK inhibitor, as part of the first genomically driven phase II study in recurrent or progressive grade 1-3 meningiomas. PATIENTS AND METHODS: Eligible patients whose tumors screened positively for NF2 mutations were treated with GSK2256098, 750 mg orally twice daily, until progressive disease. Efficacy was evaluated using two coprimary end points: progression-free survival at 6 months (PFS6) and response rate by Macdonald criteria, where PFS6 was evaluated separately within grade-based subgroups: grade 1 versus 2/3 meningiomas. Per study design, the FAK inhibitor would be considered promising in this patient population if either end point met the corresponding decision criteria for efficacy. RESULTS: Of 322 patients screened for all mutation cohorts of the study, 36 eligible and evaluable patients with NF2 mutations were enrolled and treated: 12 grade 1 and 24 grade 2/3 patients. Across all grades, one patient had a partial response and 24 had stable disease as their best response to treatment. In grade 1 patients, the observed PFS6 rate was 83% (10/12 patients; 95% CI, 52 to 98). In grade 2/3 patients, the observed PFS6 rate was 33% (8/24 patients; 95% CI, 16 to 55). The study met the PFS6 efficacy end point both for the grade 1 and the grade 2/3 cohorts. Treatment was well tolerated; seven patients had a maximum grade 3 adverse event that was at least possibly related to treatment with no grade 4 or 5 events. CONCLUSION: GSK2256098 was well tolerated and resulted in an improved PFS6 rate in patients with recurrent or progressive NF2-mutated meningiomas, compared with historical controls. The criteria for promising activity were met, and FAK inhibition warrants further evaluation for this patient population.


Subject(s)
Meningeal Neoplasms , Meningioma , Humans , Focal Adhesion Protein-Tyrosine Kinases/genetics , Focal Adhesion Protein-Tyrosine Kinases/therapeutic use , Meningeal Neoplasms/drug therapy , Meningeal Neoplasms/genetics , Meningeal Neoplasms/pathology , Meningioma/drug therapy , Meningioma/genetics , Mutation , Neoplasm Recurrence, Local/drug therapy
6.
J Exp Clin Cancer Res ; 41(1): 344, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36517865

ABSTRACT

BACKGROUND: Vaccine immunotherapy may improve survival in Glioblastoma (GBM). A multicenter phase II trial was designed to determine: (1) the success rate of manufacturing the Aivita GBM vaccine (AV-GBM-1), (2) Adverse Events (AE) associated with AV-GBM-1 administration, and (3) survival. METHODS: Fresh suspected glioblastoma tissue was collected during surgery, and patients with pathology-confirmed GBM enrolled before starting concurrent Radiation Therapy and Temozolomide (RT/TMZ) with Intent to Treat (ITT) after recovery from RT/TMZ. AV-GBM-1 was made by incubating autologous dendritic cells with a lysate of irradiated autologous Tumor-Initiating Cells (TICs). Eligible patients were adults (18 to 70 years old) with a Karnofsky Performance Score (KPS) of 70 or greater, a successful TIC culture, and sufficient monocytes collected. A cryopreserved AV-GBM-1 dose was thawed and admixed with 500 µg of Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) before every subcutaneous (s.c.) administration. RESULTS: Success rates were 97% for both TIC production and monocyte collection. AV-GBM-1 was manufactured for 63/63 patients; 60 enrolled per ITT; 57 started AV-GBM-1. The most common AEs attributed to AV-GBM-1 were local injection site reactions (16%) and flu-like symptoms (10%). Treatment-emergent AEs included seizures (33%), headache (37%), and focal neurologic symptoms (28%). One patient discontinued AV-GBM-1 because of seizures. Median Progression-Free Survival (mPFS) and median Overall Survival (mOS) from ITT enrollment were 10.4 and 16.0 months, respectively. 2-year Overall Survival (OS) is 27%. CONCLUSIONS: AV-GBM-1 was reliably manufactured. Treatment was well-tolerated, but there were numerous treatment-emergent central nervous system AEs. mPFS was longer than historical benchmarks, though no mOS improvement was noted. TRIAL REGISTRATION: NCT, NCT03400917 , Registered 10 January 2018.


Subject(s)
Brain Neoplasms , Glioblastoma , Vaccines , Adolescent , Adult , Aged , Humans , Middle Aged , Young Adult , Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/drug therapy , Dendritic Cells , Glioblastoma/drug therapy , Seizures/drug therapy , Temozolomide , Treatment Outcome , Vaccines/adverse effects
7.
Neurooncol Adv ; 4(1): vdac040, 2022.
Article in English | MEDLINE | ID: mdl-35611270

ABSTRACT

Background: Treatment options for unresectable new and recurrent glioblastoma remain limited. Laser ablation has demonstrated safety as a surgical approach to treating primary brain tumors. The LAANTERN prospective multicenter registry (NCT02392078) data were analyzed to determine clinical outcomes for patients with new and recurrent IDH wild-type glioblastoma. Methods: Demographics, intraprocedural data, adverse events, KPS, health economics, and survival data were prospectively collected and then analyzed on IDH wild-type newly diagnosed and recurrent glioblastoma patients who were treated with laser ablation at 14 US centers between January 2016 and May 2019. Data were monitored for accuracy. Statistical analysis included individual variable summaries, multivariable differences in survival, and median survival numbers. Results: A total of 29 new and 60 recurrent IDH wild-type WHO grade 4 glioblastoma patients were treated. Positive MGMT promoter methylation status was present in 5/29 of new and 23/60 of recurrent patients. Median physician-estimated extent of ablation was 91%-99%. Median overall survival (OS) was 9.73 months (95% confidence interval: 5.16, 15.91) for newly diagnosed patients and median post-procedure survival was 8.97 months (6.94, 12.36) for recurrent patients. Median OS for newly diagnosed patients receiving post-LITT chemo/radiation was 16.14 months (6.11, not reached). Factors associated with improved survival were MGMT promoter methylation, adjuvant chemotherapy within 12 weeks, and tumor volume <3 cc. Conclusions: Laser ablation is a viable option for patients with new and recurrent glioblastoma. Median OS for IDH wild-type newly diagnosed glioblastoma is comparable to outcomes observed in other tumor resection studies when those patients undergo radiation and chemotherapy following LITT.

8.
Sci Rep ; 11(1): 22355, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34785698

ABSTRACT

WT2725 is a Wilms' tumor gene 1 (WT1)-derived-oligopeptide vaccine designed to induce WT1-specific cytotoxic T-lymphocytes against WT1+ tumors in human leukocyte antigen (HLA)-A*0201+ and/or HLA-A*0206+ patients. Here, we report the results of a phase I study of WT2725. In this phase I, open-label, dose-escalation and expansion two-part study, the WT2725 dosing emulsion was administered as a monotherapy to patients with advanced malignancies known to overexpress WT1, including glioblastoma. In part 1, 44 patients were sequentially allocated to four doses: 0.3 mg (n = 5), 0.9 mg (n = 5), 3 mg (n = 6), and 9 mg (n = 28). In part 2, 18 patients were allocated to two doses: 18 mg (n = 9) and 27 mg (n = 9). No dose-limiting toxicities were observed, so the maximum tolerated dose was not reached. Median progression-free survival was 58 (95% confidence interval [CI] 56-81) days (~ 2 months) across all patients with solid tumors; median overall survival was 394 days (13.0 months) (95% CI 309-648). Overall immune-related response rate in solid tumor patients was 7.5% (95% CI 2.6-19.9); response was most prominent in the glioblastoma subgroup. Overall, 62.3% of patients were considered cytotoxic T-lymphocyte responders; the proportion increased with increasing WT2725 dosing emulsion dose. WT2725 dosing emulsion was well tolerated. Preliminary tumor response and biological marker data suggest that WT2725 dosing emulsion may exert antitumor activity in malignancies known to overexpress the WT1 protein, particularly glioblastoma, and provide a rationale for future clinical development.Trial registration: NCT01621542.


Subject(s)
Cancer Vaccines/administration & dosage , Glioblastoma , Oligopeptides/administration & dosage , WT1 Proteins/immunology , Adult , Aged , Cancer Vaccines/adverse effects , Cancer Vaccines/immunology , Disease-Free Survival , Emulsions , Female , Glioblastoma/immunology , Glioblastoma/mortality , Glioblastoma/therapy , Humans , Male , Middle Aged , Oligopeptides/adverse effects , Oligopeptides/immunology , Survival Rate
9.
Neurooncol Adv ; 3(1): vdab006, 2021.
Article in English | MEDLINE | ID: mdl-33615223

ABSTRACT

BACKGROUND: Dexanabinol is a synthetic analogue of tetrahydrocannabinol identified as a potential anti-cancer therapeutic by e-Therapeutics PLC. Dexanabinol was selected for further investigation based on its preclinical tumoricidal activity. This phase I dose-escalation trial examined the safety, drug penetration into the central nervous system (CNS), preliminary antitumor activity, and recommended phase II dose. METHODS: Dexanabinol formulated in cremophor/ethanol was administered once weekly via 3-hour intravenous infusion to patients with brain cancer. RESULTS: A total of 26 patients were dosed once weekly at 2, 4, 8, 16, 24, 28, and 36 mg/kg. Two patients at 36 mg/kg were nonevaluable for dose level confirmation, having withdrawn early for reasons unrelated to study treatment. A recommended phase II dose of dexanabinol was established at 28 mg/kg due to related, reversible adverse events at higher dose levels that required medications for symptomatic relief. The most common drug-related toxicities were the depressed level of consciousness and lightheadedness, diarrhea, itching, fatigue, chest discomfort, and tingling in the mouth. Systemic exposure to dexanabinol (AUC0-t and C max) increased from 2 to 36 mg/kg, with dose nonproportionality apparent at the highest dose; dexanabinol was present in appreciable levels in the cerebrospinal fluid (CSF), which implies the possibility of exposure of intracranial tumors to drug. Five of 24 efficacy-evaluable patients (21%) experienced stable disease with a median duration of 2 cycles (28-day cycle) as the best response. CONCLUSIONS: Dexanabinol administered weekly by intravenous infusion was safe and well-tolerated up to 28 mg/kg in brain cancer patients, but has limited antitumor activity in patients with brain cancer.

10.
Int J Cancer ; 148(11): 2839-2847, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33497479

ABSTRACT

Plasma cell-free DNA (cfDNA) is emerging as an important diagnostic tool in cancer. However, cfDNA alterations may differ from those in tissue and sometimes may reflect processes unrelated to the cancer, including clonal hematopoiesis (CH). We examined plasma cfDNA, tested by next-generation sequencing (NGS), for characterized alterations (excluding variants of unknown significance) in 135 patients with invasive glioma. Overall, 21% (28/135) had ≥1 alteration; 17% (23/135) had CH-type cfDNA mutations. Temozolomide (a mutagenic alkylating agent) with concurrent radiation therapy prior to blood draw was significantly associated with an increase in CH-type mutations, even after age, race/ethnicity, and WHO-grade were considered as confounders (odds ratio [95% confidence interval, CI] 8.98 [1.13-71.46]; P = .04; multivariable analysis). Further, of 18 patients with invasive glioma who had both cfDNA and tissue DNA NGS and had ≥1 cfDNA alteration, 16 (89%) had ≥1 cfDNA alteration not found in their tissue DNA, including CH-type alterations in genes such as TP53 (most common), ATM, GNAS, and JAK2. Altogether, 87% of cfDNA alterations (20/23) observed in the 18 patients were implicated in CH. Finally, examining all 135 patients, CH-type cfDNA mutations were an independent prognostic factor for shorter survival (hazard ratio [95% CI] 3.28 [1.28-8.40]; P = .01). These findings emphasize that not all characterized cfDNA alterations detected in patients with solid tumors are cancer-related. Importantly, in patients with invasive gliomas who have had prior temozolomide and radiation, CH-related alterations in cfDNA are frequent and correlate with poor outcomes.


Subject(s)
Brain Neoplasms/therapy , Cell-Free Nucleic Acids/analysis , Glioma/therapy , Mutation , Sequence Analysis, DNA/methods , Temozolomide/therapeutic use , Adult , Aged , Aged, 80 and over , Brain Neoplasms/genetics , Chemoradiotherapy , Clonal Hematopoiesis , DNA, Neoplasm/genetics , Glioma/genetics , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Prognosis , Survival Analysis , Treatment Outcome , Young Adult
11.
Mol Oncol ; 15(1): 67-79, 2021 01.
Article in English | MEDLINE | ID: mdl-32881280

ABSTRACT

Molecular characterization of cancers is important in dictating prognostic factors and directing therapy. Next-generation sequencing of plasma circulating tumor DNA (ctDNA) offers less invasive, more convenient collection, and a more real-time representation of a tumor and its molecular heterogeneity than tissue. However, little is known about the clinical implications of ctDNA assessment in gynecologic cancer. We describe the molecular landscape identified on ctDNA, ctDNA concordance with tissue-based analysis, and factors associated with overall survival (OS) in gynecologic cancer patients with ctDNA analysis. We reviewed clinicopathologic and genomic information for 105 consecutive gynecologic cancer patients with ctDNA analysis, including 78 with tissue-based sequencing, enrolled in the Profile-Related Evidence Determining Individualized Cancer Therapy (NCT02478931) trial at the University of California San Diego Moores Cancer Center starting July 2014. Tumors included ovarian (47.6%), uterine (35.2%), cervical (12.4%), vulvovaginal (2.9%), and unknown gynecologic primary (1.9%). Most ovarian and uterine cancers (86%) were high grade. 34% (N = 17) of ovarian cancers had BRCA alterations, and 22% (N = 11) were platinum sensitive. Patients received median 2 (range 0-13) lines of therapy prior to ctDNA collection. Most (75.2%) had at least one characterized alteration on ctDNA analysis, and the majority had unique genomic profiles on ctDNA. Most common alterations were TP53 (N = 59, 56.2% of patients), PIK3CA (N = 26, 24.8%), KRAS (N = 14, 13.3%), BRAF (N = 10, 9.5%), ERBB2 (N = 8, 7.6%), and MYC (N = 8, 7.6%). Higher ctDNA maximum mutation allele frequency was associated with worse OS [hazard ratio (HR): 1.91, P = 0.03], while therapy matched to ctDNA alterations (N = 33 patients) was independently associated with improved OS (HR: 0.34, P = 0.007) compared to unmatched therapy (N = 28 patients) in multivariate analysis. Tissue and ctDNA genomic results showed high concordance unaffected by temporal or spatial factors. This study provides evidence for the utility of ctDNA in determining outcome and individualizing cancer therapy in patients with gynecologic cancer.


Subject(s)
Circulating Tumor DNA/blood , Genital Neoplasms, Female/blood , Adult , Aged , Aged, 80 and over , Biopsy , Female , Gene Frequency/genetics , Genital Neoplasms, Female/pathology , Humans , Middle Aged , Multivariate Analysis , Mutation/genetics , Prognosis , Survival Analysis , Time Factors
12.
JAMA Oncol ; 6(12): 1939-1946, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33119048

ABSTRACT

Importance: New treatments are needed to improve the prognosis of patients with recurrent high-grade glioma. Objective: To compare overall survival for patients receiving tumor resection followed by vocimagene amiretrorepvec (Toca 511) with flucytosine (Toca FC) vs standard of care (SOC). Design, Setting, and Participants: A randomized, open-label phase 2/3 trial (TOCA 5) in 58 centers in the US, Canada, Israel, and South Korea, comparing posttumor resection treatment with Toca 511 followed by Toca FC vs a defined single choice of approved (SOC) therapies was conducted from November 30, 2015, to December 20, 2019. Patients received tumor resection for first or second recurrence of glioblastoma or anaplastic astrocytoma. Interventions: Patients were randomized 1:1 to receive Toca 511/FC (n = 201) or SOC control (n = 202). For the Toca 511/FC group, patients received Toca 511 injected into the resection cavity wall at the time of surgery, followed by cycles of oral Toca FC 6 weeks after surgery. For the SOC control group, patients received investigators' choice of single therapy: lomustine, temozolomide, or bevacizumab. Main Outcomes and Measures: The primary outcome was overall survival (OS) in time from randomization date to death due to any cause. Secondary outcomes reported in this study included safety, durable response rate (DRR), duration of DRR, durable clinical benefit rate, OS and DRR by IDH1 variant status, and 12-month OS. Results: All 403 randomized patients (median [SD] age: 56 [11.46] years; 62.5% [252] men) were included in the efficacy analysis, and 400 patients were included in the safety analysis (3 patients on the SOC group did not receive resection). Final analysis included 271 deaths (141 deaths in the Toca 511/FC group and 130 deaths in the SOC control group). The median follow-up was 22.8 months. The median OS was 11.10 months for the Toca 511/FC group and 12.22 months for the control group (hazard ratio, 1.06; 95% CI 0.83, 1.35; P = .62). The secondary end points did not demonstrate statistically significant differences. The rates of adverse events were similar in the Toca 511/FC group and the SOC control group. Conclusions and Relevance: Among patients who underwent tumor resection for first or second recurrence of glioblastoma or anaplastic astrocytoma, administration of Toca 511 and Toca FC, compared with SOC, did not improve overall survival or other efficacy end points. Trial Registration: ClinicalTrials.gov Identifier: NCT02414165.


Subject(s)
Antineoplastic Agents/administration & dosage , Brain Neoplasms/drug therapy , Cytosine Deaminase/administration & dosage , Flucytosine/administration & dosage , Glioma/drug therapy , Aged , Antineoplastic Agents/adverse effects , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Bevacizumab/administration & dosage , Bevacizumab/adverse effects , Brain Neoplasms/genetics , Brain Neoplasms/surgery , Cytosine Deaminase/adverse effects , Female , Flucytosine/adverse effects , Glioma/genetics , Glioma/surgery , Humans , Isocitrate Dehydrogenase/genetics , Lomustine/administration & dosage , Lomustine/adverse effects , Male , Middle Aged , Recombinant Proteins/administration & dosage , Recombinant Proteins/adverse effects , Standard of Care , Survival Analysis , Temozolomide/administration & dosage , Temozolomide/adverse effects , Treatment Outcome
13.
J Neurooncol ; 147(3): 681-690, 2020 May.
Article in English | MEDLINE | ID: mdl-32239431

ABSTRACT

PURPOSE: To use 3D pseudocontinuous arterial spin labeling (3D PCASL) and dynamic susceptibility contrast-enhanced (DSC) perfusion MRI to differentiate progressive disease from pseudoprogression in patients with glioblastoma (GBM). METHODS: Thirty-two patients with GBM who developed progressively enhancing lesions within the radiation field following resection and chemoradiation were included in this retrospective, single-institution study. The updated modified RANO criteria were used to establish progressive disease or pseudoprogression. Following 3D PCASL and DSC MR imaging, perfusion parameter estimates of cerebral blood flow (ASL-nCBF and DSC-nrCBF) and cerebral blood volume (DSC-nrCBV) were calculated. Additionally, contrast enhanced volumes were measured. Mann-Whitney U tests were used to compare groups. Linear discriminant analysis (LDA) and area under receiver operator characteristic curve (AUC) analyses were used to evaluate performance of each perfusion parameter and to determine optimal cut-off points. RESULTS: All perfusion parameter measurements were higher in patients with progressive disease (mean, 95% CI ASL-nCBF 2.48, [2.03, 2.93]; DSC-nrCBF = 2.27, [1.85, 2.69]; DSC-nrCBV = 3.51, [2.37, 4.66]) compared to pseudoprogression (mean, 95% CI ASL-nCBF 0.99, [0.47, 1.52]; DSC-nrCBF = 1.05, [0.36, 1.74]; DSC-nCBV = 1.19, [0.34, 2.05]), and findings were significant at the p < 0.0125 level (p = 0.001, 0.003, 0.002; effect size: Cohen's d = 1.48, 1.27, and 0.92). Contrast enhanced volumes were not significantly different between groups (p > 0.447). All perfusion parameters demonstrated high AUC (0.954 for ASL-nCBF, 0.867 for DSC-nrCBF, and 0.891 for DSC-nrCBV), however, ASL-nCBF demonstrated the highest AUC and misclassified the fewest cases (N = 6). Lesions correctly classified by ASL but misclassified by DSC were located along the skull base or adjacent to large resection cavities with residual blood products, at areas of increased susceptibility. CONCLUSION: Both 3D PCASL and DSC perfusion MRI techniques have nearly equivalent performance for the differentiation of progressive disease from pseudoprogression in patients with GBM. However, 3D PCASL is less sensitive to susceptibility artifact and may allow for improved classification in select cases.


Subject(s)
Brain Neoplasms/diagnostic imaging , Glioblastoma/diagnostic imaging , Magnetic Resonance Imaging/methods , Adult , Contrast Media , Female , Humans , Imaging, Three-Dimensional/methods , Magnetic Resonance Angiography/methods , Male , Sensitivity and Specificity , Spin Labels , Young Adult
14.
Front Oncol ; 10: 24, 2020.
Article in English | MEDLINE | ID: mdl-32047723

ABSTRACT

Immunotherapy is increasingly used in the treatment of glioblastoma (GBM), with immune checkpoint therapy gaining in popularity given favorable outcomes achieved for other tumors. However, immune-mediated (IM)-pseudoprogression is common, remains poorly characterized, and renders conventional imaging of little utility when evaluating for treatment response. We present the case of a 64-year-old man with GBM who developed pathologically proven IM-pseudoprogression after initiation of a checkpoint inhibitor, and who subsequently developed true tumor progression at a distant location. Based on both qualitative and quantitative analysis, we demonstrate that an advanced diffusion-weighted imaging (DWI) technique called restriction spectrum imaging (RSI) can differentiate IM-pseudoprogression from true progression even when conventional imaging, including standard DWI/apparent diffusion coefficient (ADC), is not informative. These data complement existing literature supporting the ability of RSI to estimate tumor cellularity, which may help to resolve complex diagnostic challenges such as the identification of IM-pseudoprogression.

15.
Clin Cancer Res ; 26(12): 2789-2799, 2020 06 15.
Article in English | MEDLINE | ID: mdl-31969331

ABSTRACT

PURPOSE: ANG1005, a novel taxane derivative, consists of three paclitaxel molecules covalently linked to Angiopep-2, designed to cross the blood-brain and blood-cerebrospinal barriers and to penetrate malignant cells via LRP1 transport system. Preclinical and clinical evidence of efficacy with ANG1005 has been previously shown. PATIENTS AND METHODS: A multicenter, open-label phase II study in adult patients with measurable recurrent brain metastases from breast cancer (BCBM), with or without leptomeningeal carcinomatosis was conducted (n = 72 BCBM; n = 28 leptomeningeal carcinomatosis subset). ANG1005 was administered intravenously at 600 mg/m2 every 3 weeks. Tumor assessment was based on central nervous system (CNS) RECIST 1.1 for intracranial, and RECIST 1.1 for extracranial response. The primary endpoint was determination of intracranial objective response rate (iORR). RESULTS: Median age was 47.5 years. Safety profile was similar to that of paclitaxel with myelosuppression as the predominating toxicity. Average number of prior CNS-directed therapies was 2.8 and 94% of the patients had prior taxane treatment. Patient benefit (stable disease or better) was seen in 77% (intracranial) and 86% (extracranial) of the evaluable patients, with iORR of 15% (investigator) or 8% (independent radiology facility [IRF] review). In the leptomeningeal carcinomatosis subset, 79% of the patients had intracranial disease control and estimated median overall survival of 8.0 months (95% CI, 5.4-9.4). CONCLUSIONS: Even though the study preset rule for iORR per IRF was not met in this heavily pretreated population, a notable CNS and systemic treatment effect was seen in all patients including symptom improvement and prolonged overall survival compared to historical control for the subset of patients with leptomeningeal carcinomatosis (n = 28).


Subject(s)
Brain Neoplasms/drug therapy , Breast Neoplasms/drug therapy , Meningeal Carcinomatosis/drug therapy , Neoplasm Recurrence, Local/drug therapy , Paclitaxel/analogs & derivatives , Peptides/therapeutic use , Adult , Aged , Brain Neoplasms/secondary , Breast Neoplasms/pathology , Female , Follow-Up Studies , Humans , Meningeal Carcinomatosis/pathology , Middle Aged , Neoplasm Recurrence, Local/pathology , Paclitaxel/therapeutic use , Prognosis
16.
Nat Med ; 25(5): 744-750, 2019 05.
Article in English | MEDLINE | ID: mdl-31011206

ABSTRACT

Cancer treatments have evolved from indiscriminate cytotoxic agents to selective genome- and immune-targeted drugs that have transformed the outcomes of some malignancies1. Tumor complexity and heterogeneity suggest that the 'precision medicine' paradigm of cancer therapy requires treatment to be personalized to the individual patient2-6. To date, precision oncology trials have been based on molecular matching with predetermined monotherapies7-14. Several of these trials have been hindered by very low matching rates, often in the 5-10% range15, and low response rates. Low matching rates may be due to the use of limited gene panels, restrictive molecular matching algorithms, lack of drug availability, or the deterioration and death of end-stage patients before therapy can be implemented. We hypothesized that personalized treatment with combination therapies would improve outcomes in patients with refractory malignancies. As a first test of this concept, we implemented a cross-institutional prospective study (I-PREDICT, NCT02534675 ) that used tumor DNA sequencing and timely recommendations for individualized treatment with combination therapies. We found that administration of customized multidrug regimens was feasible, with 49% of consented patients receiving personalized treatment. Targeting of a larger fraction of identified molecular alterations, yielding a higher 'matching score', was correlated with significantly improved disease control rates, as well as longer progression-free and overall survival rates, compared to targeting of fewer somatic alterations. Our findings suggest that the current clinical trial paradigm for precision oncology, which pairs one driver mutation with one drug, may be optimized by treating molecularly complex and heterogeneous cancers with combinations of customized agents.


Subject(s)
Neoplasms/genetics , Neoplasms/therapy , Adult , Aged , Aged, 80 and over , Combined Modality Therapy , Female , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Molecular Targeted Therapy , Precision Medicine , Progression-Free Survival , Prospective Studies , Young Adult
17.
CNS Oncol ; 8(2): CNS34, 2019 06.
Article in English | MEDLINE | ID: mdl-30855176

ABSTRACT

Aim: Genomically matched trials in primary brain tumors (PBTs) require recent tumor sequencing. We evaluated whether circulating tumor DNA (ctDNA) could facilitate genomic interrogation in these patients. Methods: Data from 419 PBT patients tested clinically with a ctDNA NGS panel at a CLIA-certified laboratory were analyzed. Results: A total of 211 patients (50%) had ≥1 somatic alteration detected. Detection was highest in meningioma (59%) and gliobastoma (55%). Single nucleotide variants were detected in 61 genes, with amplifications detected in ERBB2, MET, EGFR and others. Conclusion: Contrary to previous studies with very low yields, we found half of PBT patients had detectable ctDNA with genomically targetable off-label or clinical trial options for almost 50%. For those PBT patients with detectable ctDNA, plasma cfDNA genomic analysis is a clinically viable option for identifying genomically driven therapy options.


Subject(s)
Biomarkers, Tumor/genetics , Brain Neoplasms/genetics , Circulating Tumor DNA/genetics , Glioblastoma/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/blood , Brain Neoplasms/blood , Brain Neoplasms/diagnosis , Brain Neoplasms/pathology , Child , Child, Preschool , Circulating Tumor DNA/blood , Female , Glioblastoma/blood , Glioblastoma/diagnosis , Glioblastoma/pathology , Humans , Male , Middle Aged , Mutation , Prognosis , Sequence Analysis, DNA , Young Adult
18.
Radiother Oncol ; 132: 27-33, 2019 03.
Article in English | MEDLINE | ID: mdl-30825966

ABSTRACT

BACKGROUND AND PURPOSE: Executive function (EF) decline is common after brain radiation therapy (RT), yet the etiology is unclear. We analyzed the association between longitudinal changes in frontal lobe white matter microstructure and decline in EF following RT in brain tumor patients on a prospective clinical trial. MATERIALS AND METHODS: Diffusion tensor imaging was obtained on 22 patients with brain tumors prior to RT, as well as 3- and 6-months post-RT, in a prospective, observational trial. Fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) were calculated within the superficial white matter (SWM) of the anterior cingulate (AC) and dorsolateral prefrontal cortex. Measures of cognitive flexibility, verbal fluency, and verbal set-shifting were obtained pre- and post-RT. Reliable change indices were calculated to determine significant baseline to 6-month EF changes. RESULTS: Decreases in FA and increases in MD were observed in the caudal AC (CAC) at 3-months post-RT. CAC changes were characterized by increased RD bilaterally. From baseline to 6-months post-RT, decreased FA and increased MD and RD of the CAC was associated with decline in verbal set-shifting ability, whereas increased MD in the CAC was associated with a decline in cognitive flexibility. CONCLUSION: White matter underlying the AC may be particularly vulnerable to radiation effects. Early microstructural loss within AC SWM represents an important biomarker for EF decline, and dose reduction in this region may represent a possibility for cognitive preservation for patients receiving radiotherapy.


Subject(s)
Brain Neoplasms/radiotherapy , Executive Function/radiation effects , Radiation Injuries/diagnostic imaging , Radiation Injuries/psychology , White Matter/diagnostic imaging , White Matter/radiation effects , Biomarkers , Brain/diagnostic imaging , Brain/pathology , Brain/radiation effects , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Diffusion Tensor Imaging/methods , Female , Humans , Longitudinal Studies , Male , Middle Aged , Prospective Studies , Radiation Injuries/pathology , Radiation Injuries/physiopathology
19.
J Immunother Cancer ; 6(1): 153, 2018 12 22.
Article in English | MEDLINE | ID: mdl-30577851

ABSTRACT

BACKGROUND: Neurologic toxicities with immune therapy are rare, but can cause devastating and often permanent injury when they occur. Although there is increasing interest in the potential synergism between immune therapy and radiation, it is possible that such combinations may lead to a greater number or increased severity of immune-related adverse events. We present here a case of extensive and progressive transverse myelitis following combined therapy, which did not improve until treatment with infliximab. This case highlights the unmet need for treatment of adverse events that are refractory to consensus recommendations, and may ultimately require further study and incorporation into future published guidelines. CASE PRESENTATION: We report a case of a 68-year-old with metastatic melanoma, who developed transverse myelitis in the setting of immune checkpoint blockade and spinal irradiation for vertebral metastases. Despite management according to published consensus guidelines: cessation of immune therapy, high-dose steroids, and plasmapheresis, he continued to deteriorate neurologically, and imaging revealed a progressive and ascending transverse myelitis. The patient was then treated with infliximab, and demonstrated dramatic imaging and modest clinical improvement following the first treatment cycle. CONCLUSIONS: This is the first report describing the successful use of infliximab in immune therapy and radiation-related transverse myelitis that was not responding to recommended therapy. Evaluation of additional treatment options such as infliximab for high-grade immune-related neurologic toxicities is warranted, and may be needed earlier in the disease process to prevent significant morbidity. The adverse effects of immune therapy when used in combination with radiation also require further investigation.


Subject(s)
Antineoplastic Agents, Immunological/adverse effects , Infliximab/therapeutic use , Melanoma , Myelitis, Transverse/drug therapy , Skin Neoplasms , Aged , Antibodies, Monoclonal, Humanized/adverse effects , Drug Resistance , Humans , Ipilimumab/adverse effects , Male , Melanoma/drug therapy , Melanoma/pathology , Melanoma/radiotherapy , Myelitis, Transverse/etiology , Nivolumab/adverse effects , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Skin Neoplasms/radiotherapy , Spinal Neoplasms/drug therapy , Spinal Neoplasms/radiotherapy , Spinal Neoplasms/secondary
20.
Int J Cancer ; 143(11): 3019-3026, 2018 12 01.
Article in English | MEDLINE | ID: mdl-29923182

ABSTRACT

We sought to compare the tumor profiles of brain metastases from common cancers with those of primary tumors and extracranial metastases in order to identify potential targets and prioritize rational treatment strategies. Tumor samples were collected from both the primary and metastatic sites of nonsmall cell lung cancer, breast cancer and melanoma from patients in locations worldwide, and these were submitted to Caris Life Sciences for tumor multiplatform analysis, including gene sequencing (Sanger and next-generation sequencing with a targeted 47-gene panel), protein expression (assayed by immunohistochemistry) and gene amplification (assayed by in situ hybridization). The data analysis considered differential protein expression, gene amplification and mutations among brain metastases, extracranial metastases and primary tumors. The analyzed population included: 16,999 unmatched primary tumor and/or metastasis samples: 8,178 nonsmall cell lung cancers (5,098 primaries; 2,787 systemic metastases; 293 brain metastases), 7,064 breast cancers (3,496 primaries; 3,469 systemic metastases; 99 brain metastases) and 1,757 melanomas (660 primaries; 996 systemic metastases; 101 brain metastases). TOP2A expression was increased in brain metastases from all 3 cancers, and brain metastases overexpressed multiple proteins clustering around functions critical to DNA synthesis and repair and implicated in chemotherapy resistance, including RRM1, TS, ERCC1 and TOPO1. cMET was overexpressed in melanoma brain metastases relative to primary skin specimens. Brain metastasis patients may particularly benefit from therapeutic targeting of enzymes associated with DNA synthesis, replication and/or repair.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/pathology , Neoplasm Metastasis/genetics , Neoplasm Metastasis/pathology , Aged , Female , Gene Expression/genetics , Humans , Male , Middle Aged , Mutation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...