Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Molecules ; 29(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38611711

ABSTRACT

The injudicious usage of antibiotics during infections caused by Gram-negative bacteria leads to the emergence of ß-lactamases. Among them, the NDM-1 enzyme poses a serious threat to human health. Developing new antibiotics or inhibiting ß-lactamases might become essential to reduce and prevent bacterial infections. Nanobodies (Nbs), the smallest antigen-binding single-domain fragments derived from Camelidae heavy-chain-only antibodies, targeting enzymes, are innovative alternatives to develop effective inhibitors. The biopanning of an immune VHH library after phage display has helped to retrieve recombinant antibody fragments with high inhibitory activity against recombinant-NDM-1 enzyme. Nb02NDM-1, Nb12NDM-1, and Nb17NDM-1 behaved as uncompetitive inhibitors against NDM-1 with Ki values in the nM range. Remarkably, IC50 values of 25.0 nM and 8.5 nM were noted for Nb02NDM-1 and Nb17NDM-1, respectively. The promising inhibition of NDM-1 by Nbs highlights their potential application in combating particular Gram-negative infections.


Subject(s)
Camelus , Single-Domain Antibodies , Humans , Animals , Single-Domain Antibodies/pharmacology , beta-Lactamases , Anti-Bacterial Agents/pharmacology , Immunoglobulin Heavy Chains
2.
J Glob Antimicrob Resist ; 37: 24-27, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38408564

ABSTRACT

OBJECTIVES: K. pneumoniae is a common cause of severe hospital-acquired infections. In the present study, we have characterised the whole-genome of two K. pneumoniae ST437 belonging to the clonal complex CC258. METHODS: The whole-genome sequencing was performed by MiSeq Illumina, with a 2 × 300bp paired-end run. ResFinder 4.4.2 was used to detect acquired antimicrobial resistance genes (ARGs) and chromosomal mutations. Mobile genetic elements (plasmids and ISs) were identified by MobileElementFinder v1.0.3. The genome was also assigned to ST using MLST 2.0.9. Virulence factors were detected using the Virulence Factor Database (VFDB). RESULTS: K. pneumoniae KPNAQ_1/23 and KPNAQ_2/23 strains, isolated from urine samples of hospitalised patients, showed resistance to most antibiotics, including ceftazidime-avibactam, ceftolozane-tazobactam, and meropenem-vaborbactam combinations. Both strains were susceptible only to cefiderocol. Multiple mechanisms of resistance were identified. Resistance to ß-lactams was due to the presence of NDM-5, OXA-232, CTX-M-15, SHV-182 ß-lactamases, and OmpK36 and OmpK37 porin mutations. Resistance to fluoroquinolones was mediated by chromosomal mutations in acrR, oqxAB efflux pumps, and the bifunctional gene aac(6')-Ib-cr. CONCLUSION: The presence of different virulence genes makes these KPNAQ_1/23 and KPNAQ_2/23 high-risk clones.

3.
Antibiotics (Basel) ; 12(12)2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38136693

ABSTRACT

In the present study, we analyzed the genome of two S. enterica strains TS1 and TS2 from stool and blood cultures, respectively, and one strain of C. freundii TS3, isolated from a single hospitalized patient with acute myeloid leukemia. The S. enterica Goldcoast ST358 (O:8 (C2-C3) serogroup), sequenced by the MiSeq Illumina system, showed the presence of ß-lactamase genes (blaVIM-1, blaSHV-12 and blaOXA-10), aadA1, ant(2″)-Ia, aac(6')-Iaa, aac(6')-Ib3, aac(6')-Ib-cr, qnrVC6, parC(T57S), and several incompatibility plasmids. A wide variety of insertion sequences (ISs) and transposon elements were identified. In C. freundii TS3, these were the blaVIM-1, blaCMY-150, and blaSHV-12, aadA1, aac(6')-Ib3, aac(6')-Ib-cr, mph(A), sul1, dfrA14, ARR-2, qnrVC6, and qnrB38. IncA plasmid isolated from E.coli/K12 transconjugant and C. freundii exhibited a sequence identity >99.9%. The transfer of IncA plasmid was evaluated by conjugation experiments.

4.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37765112

ABSTRACT

Antibiotic resistance is a public health problem with increasingly alarming data being reported. Gram-positive bacteria are among the protagonists of severe nosocomial and community infections. The objective of this review is to conduct an extensive examination of emerging treatments for Gram-positive infections including ceftobiprole, ceftaroline, dalbavancin, oritavancin, omadacycline, tedizolid, and delafloxacin. From a methodological standpoint, a comprehensive analysis on clinical trials, molecular structure, mechanism of action, microbiological targeting, clinical use, pharmacokinetic/pharmacodynamic features, and potential for therapeutic drug monitoring will be addressed. Each antibiotic paragraph is divided into specialized microbiological, clinical, and pharmacological sections, including detailed and appropriate tables. A better understanding of the latest promising advances in the field of therapeutic options could lead to the development of a better approach in managing antimicrobial therapy for multidrug-resistant Gram-positive pathogens, which increasingly needs to be better stratified and targeted.

5.
Microbiol Spectr ; 11(4): e0035223, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37306577

ABSTRACT

Pseudomonas aeruginosa is the most common pathogen infecting cystic fibrosis (CF) lungs, causing acute and chronic infections. Intrinsic and acquired antibiotic resistance allow P. aeruginosa to colonize and persist despite antibiotic treatment, making new therapeutic approaches necessary. Combining high-throughput screening and drug repurposing is an effective way to develop new therapeutic uses for drugs. This study screened a drug library of 3,386 drugs, mostly FDA approved, to identify antimicrobials against P. aeruginosa under physicochemical conditions relevant to CF-infected lungs. Based on the antibacterial activity, assessed spectrophotometrically against the prototype RP73 strain and 10 other CF virulent strains, and the toxic potential evaluated toward CF IB3-1 bronchial epithelial cells, five potential hits were selected for further analysis: the anti-inflammatory and antioxidant ebselen, the anticancer drugs tirapazamine, carmofur, and 5-fluorouracil, and the antifungal tavaborole. A time-kill assay showed that ebselen has the potential to cause rapid and dose-dependent bactericidal activity. The antibiofilm activity was evaluated by viable cell count and crystal violet assays, revealing carmofur and 5-fluorouracil as the most active drugs in preventing biofilm formation regardless of the concentration. In contrast, tirapazamine and tavaborole were the only drugs actively dispersing preformed biofilms. Tavaborole was the most active drug against CF pathogens other than P. aeruginosa, especially against Burkholderia cepacia and Acinetobacter baumannii, while carmofur, ebselen, and tirapazamine were particularly active against Staphylococcus aureus and B. cepacia. Electron microscopy and propidium iodide uptake assay revealed that ebselen, carmofur, and tirapazamine significantly damage cell membranes, with leakage and cytoplasm loss, by increasing membrane permeability. IMPORTANCE Antibiotic resistance makes it urgent to design new strategies for treating pulmonary infections in CF patients. The repurposing approach accelerates drug discovery and development, as the drugs' general pharmacological, pharmacokinetic, and toxicological properties are already well known. In the present study, for the first time, a high-throughput compound library screening was performed under experimental conditions relevant to CF-infected lungs. Among 3,386 drugs screened, the clinically used drugs from outside infection treatment ebselen, tirapazamine, carmofur, 5-fluorouracil, and tavaborole showed, although to different extents, anti-P. aeruginosa activity against planktonic and biofilm cells and broad-spectrum activity against other CF pathogens at concentrations not toxic to bronchial epithelial cells. The mode-of-action studies revealed ebselen, carmofur, and tirapazamine targeted the cell membrane, increasing its permeability with subsequent cell lysis. These drugs are strong candidates for repurposing for treating CF lung P. aeruginosa infections.


Subject(s)
Cystic Fibrosis , Pseudomonas Infections , Humans , Pseudomonas aeruginosa , Cystic Fibrosis/microbiology , High-Throughput Screening Assays , Drug Repositioning , Tirapazamine/pharmacology , Tirapazamine/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Fluorouracil , Biofilms , Pseudomonas Infections/microbiology
6.
Antibiotics (Basel) ; 12(3)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36978306

ABSTRACT

The dramatic increase in infections caused by critically multidrug-resistant bacteria is a global health concern. In this study, we characterized the antimicrobial resistance genes (ARGs) of K. pneumoniae, P. mirabilis, E. cloacae and A. baumannii isolated from both surgical wound and rectal swab of a single Italian patient. Bacterial identification was performed by MALDI-TOF MS and the antimicrobial susceptibility was carried out by Vitek 2 system. The characterization of ARGs was performed using next-generation sequencing (NGS) methodology (MiSeq Illumina apparatus). K. pneumoniae, P. mirabilis and E. cloacae were resistant to most ß-lactams and ß-lactam/ß-lactamases inhibitor combinations. A. baumannii strain was susceptible only to colistin. The presence of plasmids (IncN, IncR, IncFIB, ColRNAI and Col (MGD2)) was detected in all Enterobacterales but not in A. baumannii strain. The IncN plasmid and blaNDM-1 gene were found in K. pneumoniae, P. mirabilis and E. cloacae, suggesting a possible transfer of this gene among the three clinical species. Conjugation experiments were performed using K. pneumoniae (1 isolate), P. mirabilis (2 isolates) and E. cloacae (2 isolates) as donors and E. coli J53 as a recipient. The blaNDM-1 gene was identified by PCR analysis in all transconjugants obtained. The presence of four different bacterial species harboring resistance genes to different classes of antibiotics in a single patient substantially reduced the therapeutic options.

7.
J Inorg Biochem ; 242: 112163, 2023 05.
Article in English | MEDLINE | ID: mdl-36842244

ABSTRACT

Beta-lactam antibiotics are one of the most commonly used drug classes in managing bacterial infections. However, their use is threatened by the alarming phenomenon of antimicrobial resistance, which represents a worldwide health concern. Given the continuous spread of metallo-ß-lactamases (MBLs) producing pathogens, the need to discover broad-spectrum ß-lactamase inhibitors is increasingly growing. A series of zinc chelators have been synthesized and investigated for their ability to hamper the Zn-ion network of interactions in the active site of MBLs. We assessed the inhibitory activity of new polyimidazole ligands N,N'-bis((imidazol-4-yl)methyl)-ethylenediamine, N,N,N'-tris((imidazol-4-yl)methyl)-ethylenediamine, N,N,N,N'-tetra((imidazol-4-yl-methyl)-ethylenediamine toward three different subclasses B1 MBLs: VIM-1, NDM-1 and IMP-1 by in vitro assays. The activity of known zinc chelators such as 1,4,7,10,13-Pentaazacyclopentadecane, 1,4,8,11-Tetraazacyclotetradecane and 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid was also assessed. Moreover, a molecular docking study was carried to gain insight into the interaction mode of the most active ligands.


Subject(s)
beta-Lactamase Inhibitors , beta-Lactamases , beta-Lactamases/chemistry , Molecular Docking Simulation , beta-Lactamase Inhibitors/pharmacology , beta-Lactamase Inhibitors/chemistry , Ligands , Zinc , Chelating Agents , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests
8.
J Med Virol ; 95(1): e28402, 2023 01.
Article in English | MEDLINE | ID: mdl-36515414

ABSTRACT

Functional and structural damage of the intestinal mucosal barrier significantly contribute to translocation of gut microbial products into the bloodstream and are largely involved in HIV-1 associated chronic immune activation. This microbial translocation is largely due to a progressive exhaustion of intestinal macrophage phagocytic function, which leads to extracellular accumulation of microbial derived components and results in HIV-1 disease progression. This study aims to better understand whether the modulation of gut microbiota promotes an intestinal immune restoration in people living with HIV (PLWH). Long-term virologically suppressed PLWH underwent blood, colonic, and fecal sampling before (T0) and after 6 months (T6) of oral bacteriotherapy. Age- and gender-matched uninfected controls (UC) were also included. 16S rRNA gene sequencing was applied to all participants' fecal microbiota. Apoptosis machinery, mitochondria, and apical junctional complex (AJC) morphology and physiological functions were analyzed in gut biopsies. At T0, PLWH showed a different pattern of gut microbial flora composition, lower levels of occludin (p = 0.002) and zonulin (p = 0.01), higher claudin-2 levels (p = 0.002), a reduction of mitochondria number (p = 0.002), and diameter (p = 0.002), as well as increased levels of lipopolysaccharide (LPS) (p = 0.018) and cCK18 (p = 0.011), compared to UC. At T6, an increase in size (p = 0.005) and number (p = 0.008) of mitochondria, as well as amelioration in AJC structures (p < 0.0001) were observed. Restoration of bacterial richness (Simpson index) and biodiversity (Shannon index) was observed in all PLWH receiving oral bacteriotherapy (p < 0.05). Increased mitochondria size (p = 0.005) and number (p = 0.008) and amelioration of AJC structure (p < 0.0001) were found at T6 compared to T0. Moreover, increased occludin and zonulin concentration were observed in PLWH intestinal tracts and decreased levels of claudin-2, LPS, and cCK18 were found after oral bacteriotherapy (T0 vs. T6, p < 0.05 for all these measures). Oral bacteriotherapy supplementation might restore the balance of intestinal flora and support the structural and functional recovery of the gut mucosa in antiretroviral therapy treated PLWH.


Subject(s)
Gastrointestinal Microbiome , HIV Infections , HIV-1 , Intestinal Mucosa , Humans , Claudin-2 , HIV Infections/immunology , HIV Infections/microbiology , HIV-1/genetics , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Lipopolysaccharides , Mitochondria/metabolism , Occludin/metabolism , RNA, Ribosomal, 16S/genetics
9.
Antibiotics (Basel) ; 11(12)2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36551450

ABSTRACT

Infections caused by carbapenem-resistant Acinetobacter baumannii (CRAB) have limited therapeutic options. Sulbactam-durlobactam is a combination of two ßlactamase inhibitors with activity against CRAB under phase 3 clinical investigation. We performed a systematic review on in vitro studies reporting A. baumannii resistances against sulbactam/durlobactam. We considered "resistant" species to be those with MIC ≥ 8 mg/L. Ten studies were included in the review (9754 tested isolates). Overall, 2.3% of A. baumannii were resistant to sulbactam/durlobactam, and this percentage rose to 3.4% among CRAB subgroups and to 3.7% among colistin-resistant strains. Resistance was 100% among metallo ß-lactamase-producing strains. Overall, in 12.5% of cases, sulbactam/durlobactam resistance was associated with the production of NDM-1, in 31.7% of cases with the substitutions in the PBP3 determinants, and in the remaining cases the resistance mechanism was unknown. In conclusion, A. baumannii resistance towards sulbactam/durlobactam is limited, except for MBL-producing strains.

10.
Diagnostics (Basel) ; 12(9)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36140580

ABSTRACT

The whole-genome sequencing (WGS) of eighteen S. marcescens clinical strains isolated from 18 newborns hospitalized in the Neonatal Intensive Care Unit (NICU) at Pescara Public Hospital, Italy, was compared with that of S. marcescens isolated from cradles surfaces in the same ward. The identical antibiotic resistance genes (ARGs) and virulence factors were found in both clinical and environmental S. marcescens strains. The aac(6')-Ic, tetA(41), blaSRT-3, adeFGH, rsmA, and PBP3 (D350N) genes were identified in all strains. The SRT-3 enzyme, which exhibited 10 amino acid substitutions with respect to SST-1, the constitutive AmpC ß-lactamase in S. marcescens, was partially purified and tested against some ß-lactams. It showed a good activity against cefazolin. Both clinical and environmental S. marcescens strains exhibited susceptibility to all antibiotics tested, with the exception of amoxicillin/clavulanate.

11.
Antimicrob Agents Chemother ; 66(9): e0059522, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36040170

ABSTRACT

The MOX lineage of ß-lactamases includes a group of molecular class C enzymes (AmpCs) encoded by genes mobilized from the chromosomes of Aeromonas spp. to plasmids. MOX-9, previously identified as a plasmid-encoded enzyme from a Citrobacter freundii isolate, belongs to a novel sublineage of MOX enzymes, derived from the resident Aeromonas media AmpC. The blaMOX-9 gene was found to be carried on a transposon, named Tn7469, likely responsible for its mobilization to plasmidic context. MOX-9 was overexpressed in Escherichia coli, purified, and subjected to biochemical characterization. Kinetic analysis showed a relatively narrow-spectrum profile with strong preference for cephalosporin substrates, with some differences compared with MOX-1 and MOX-2. MOX-9 was not inhibited by clavulanate and sulbactam, while both tazobactam and avibactam acted as inhibitors in the micromolar range.


Subject(s)
Sulbactam , beta-Lactamases , Bacterial Proteins/genetics , Cephalosporins , Clavulanic Acid , Kinetics , Plasmids/genetics , Tazobactam , beta-Lactamases/chemistry , beta-Lactamases/genetics
12.
Biomedicines ; 10(8)2022 Aug 01.
Article in English | MEDLINE | ID: mdl-36009399

ABSTRACT

BACKGROUND: Although useful in the time-race against COVID-19, CPAP cannot provide oxygen over the physiological limits imposed by severe pulmonary impairments. In previous studies, we reported that the administration of the SLAB51 probiotics reduced risk of developing respiratory failure in severe COVID-19 patients through the activation of oxygen sparing mechanisms providing additional oxygen to organs critical for survival. METHODS: This "real life" study is a retrospective analysis of SARS-CoV-2 infected patients with hypoxaemic acute respiratory failure secondary to COVID-19 pneumonia undergoing CPAP treatment. A group of patients managed with ad interim routinely used therapy (RUT) were compared to a second group treated with RUT associated with SLAB51 oral bacteriotherapy (OB). RESULTS: At baseline, patients receiving SLAB51 showed significantly lower blood oxygenation than controls. An opposite condition was observed after 3 days of treatment, despite the significantly reduced amount of oxygen received by patients taking SLAB51. At 7 days, a lower prevalence of COVID-19 patients needing CPAP in the group taking probiotics was observed. The administration of SLAB51 is a complementary approach for ameliorating oxygenation conditions at the systemic level. CONCLUSION: This study proves that probiotic administration results in an additional boost in alleviating hypoxic conditions, permitting to limit on the use of CPAP and its contraindications.

13.
Antibiotics (Basel) ; 11(8)2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36010006

ABSTRACT

In the present study, the in vitro activity of the sulbactam-durlobactam (SUL-DUR) combination was evaluated against 141 carbapenem-resistant A. baumannii (CRAb) clinical strains collected from six Italian laboratories. Over half (54.6%) of these isolates were resistant to colistin. The SUL-DUR combination was active against these CRAb isolates with MIC50 and MIC90 values of 0.5 mg/L and 4 mg/L, respectively. Only eleven isolates were resistant to SUL-DUR with MIC values ranging from 8 to 128 mg/L. The SUL-DUR resistant A. baumannii exhibited several antimicrobial resistance genes (ARGs) such as blaOXA-20, blaOXA-58, blaOXA-66, blaADC-25, aac(6')-Ib3 and aac(6')-Ib-cr and mutations in gyrA (S81L) and parC (V104I, D105E). However, in these isolates, mutations Q488K and Y528H were found in PBP3. Different determinants were also identified in these CRAb isolates, including adeABC, adeFGH, adeIJK, abeS, abaQ and abaR, which encode multidrug efflux pumps associated with resistance to multiple antibacterial agents. This is the first report on the antimicrobial activity of SUL-DUR against carbapenem-resistant A. baumannii isolates selected from multiple regions in Italy.

14.
Antibiotics (Basel) ; 11(7)2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35884209

ABSTRACT

A total of 43 A. baumannii strains, isolated from 43 patients affected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and by bacterial sepsis, were analyzed by antimicrobial susceptibility testing. All strains were resistant to almost three different classes of antibiotics, including carbapenems and colistin. The whole-genome sequencing (WGS) of eight selected A. baumannii isolates showed the presence of different insertion sequences (ISs), such as ISAba13, ISAba26, IS26, ISVsa3, ISEc29, IS6100 and IS17, giving to A. baumannii a high ability to capture and mobilize antibiotic resistance genes. Resistance to carbapenems is mainly mediated by the presence of OXA-23, OXA-66 and OXA-82 oxacillinases belonging to OXA-51-like enzymes. The presence of AmpC cephalosporinase, ADC-25, was identified in all A. baumannii. The pathogenicity of A. baumannii was exacerbated by the presence of several virulence factors. The multi-locus sequence typing (MLST) analysis showed that all strains belong to sequence type 2 (ST) international clone.

15.
Antimicrob Agents Chemother ; 66(6): e0240221, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35647648

ABSTRACT

KPC-53 enzyme is a natural KPC variant which showed a duplication of L167E168 residues in the Ω-loop structure. The blaKPC-53 gene was cloned both into pBC-SK and pET-24a vectors, and the recombinant plasmids were transferred by transformation in Escherichia coli competent cells to evaluate the antimicrobial susceptibility and to produce the enzyme. Compared to KPC-3, the KPC-53 was less stable and showed a dramatic reduction of kcat and kcat/Km versus several ß-lactams, in particular carbapenems. Indeed, a 2,000-fold reduction was observed in the kcat values of KPC-53 for imipenem and meropenem. Concerning inhibitors, KPC-53 was susceptible to tazobactam and clavulanic acid but maintained resistance to avibactam. The molecular modeling indicates that the L167E168 duplication in KPC-53 modifies the interactions between residues involved in the catalytic pocket, changing the flexibility of the Ω-loop, which is directly coupled with the catalytic properties of the KPC enzymes.


Subject(s)
Amino Acids , beta-Lactamases , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Azabicyclo Compounds/pharmacology , Bacterial Proteins/metabolism , Drug Combinations , Escherichia coli/metabolism , Klebsiella pneumoniae , Microbial Sensitivity Tests , beta-Lactamase Inhibitors/pharmacology , beta-Lactamases/metabolism
16.
Int J Mol Sci ; 23(9)2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35563420

ABSTRACT

Drug repurposing is an attractive strategy for developing new antibacterial molecules. Herein, we evaluated the in vitro antibacterial, antibiofilm, and antivirulence activities of eight FDA-approved "non-antibiotic" drugs, comparatively to tobramycin, against selected Pseudomonas aeruginosa strains from cystic fibrosis patients. MIC and MBC values were measured by broth microdilution method. Time-kill kinetics was studied by the macro dilution method, and synergy studies were performed by checkerboard microdilution assay. The activity against preformed biofilms was measured by crystal violet and viable cell count assays. The effects on gene expression were studied by real-time quantitative PCR, while the cytotoxic potential was evaluated against IB3-1 bronchial CF cells. Ciclopirox, 5-fluorouracil, and actinomycin D showed the best activity against P. aeruginosa planktonic cells and therefore underwent further evaluation. Time-kill assays indicated actinomycin D and ciclopirox, contrarily to 5-fluorouracil and tobramycin, have the potential for bacterial eradication, although with strain-dependent efficacy. Ciclopirox was the most effective against the viability of the preformed biofilm. A similar activity was observed for other drugs, although they stimulate extracellular polymeric substance production. Ribavirin showed a specific antibiofilm effect, not dependent on bacterial killing. Exposure to drugs and tobramycin generally caused hyperexpression of the virulence traits tested, except for actinomycin D, which downregulated the expression of alkaline protease and alginate polymerization. Ciclopirox and actinomycin D revealed high cytotoxic potential. Ciclopirox and ribavirin might provide chemical scaffolds for anti-P. aeruginosa drugs. Further studies are warranted to decrease ciclopirox cytotoxicity and evaluate the in vivo protective effects.


Subject(s)
Biofilms , Ciclopirox , Cystic Fibrosis , Pseudomonas Infections , Ribavirin , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Ciclopirox/pharmacology , Cystic Fibrosis/drug therapy , Cystic Fibrosis/microbiology , Dactinomycin/pharmacology , Drug Repositioning , Extracellular Polymeric Substance Matrix , Fluorouracil/pharmacology , Humans , Microbial Sensitivity Tests , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa , Ribavirin/pharmacology , Tobramycin/pharmacology
17.
Diagnostics (Basel) ; 12(1)2022 Jan 16.
Article in English | MEDLINE | ID: mdl-35054380

ABSTRACT

Long-term care facilities (LTCFs) are important reservoirs of antimicrobial-resistant (AMR) bacteria which colonize patients transferred from the hospital, or they may emerge in the facility as a result of mutation or gene transfer. In the present study, we characterized, from a molecular point of view, 43 E. coli strains collected from residents of LTCFs in Northern Italy. The most common lineage found was ST131, followed by sporadic presence of ST12, ST69, ST48, ST95, ST410 and ST1193. All strains were incubators of several virulence factors, with iss, sat, iha and senB being found in 84%, 72%, 63% and 51% of E. coli, respectively. Thirty of the ST131 analyzed were of the O25b:H4 serotype and H30 subclone. The ST131 isolates were found to be mainly associated with IncF plasmids, CTX-M-1, CTX-M-3, CTX-M-15, CTX-M-27 and gyrA/parC/parE mutations. Metallo-ß-lactamases were not found in ST131, whereas KPC-3 carbapenemase was found only in two ST131 and one ST1193. In conclusion, we confirmed the spread of extended-spectrum ß-lactamase genes in E. coli ST131 isolated from colonized residents living inside LTCFs. The ST131 represents an incubator of fluoroquinolones, aminoglycosides and other antibiotic resistance genes in addition to different virulence factors.

18.
Diagnostics (Basel) ; 13(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36611377

ABSTRACT

INTRODUCTION: The Biolabo Solea 100 is a fully automated coagulation analyser using an optical system to detect coagulation designed to meet the needs of small- and medium-sized laboratories. This study aimed to evaluate the analytical performance in terms of bias, precision, and interference of the Biolabo Solea 100 coagulometer under routine laboratory conditions. In addition, a comparison was made with Stago STA-R MAX. MATERIALS AND METHODS: Imprecision and bias were evaluated for activated partial thromboplastin time (APTT), fibrinogen (FIB), and prothrombin time (PT) at the medical decision levels. The results of 200, 181, and 206 plasma samples for APTT, FIB, and PT, respectively, were compared with those obtained by Stago STA-R MAX. In addition, the interference level of bilirubin, haemoglobin, triglycerides, and fractionated heparin was evaluated. RESULTS: Repeatability, intermediate imprecision, bias, and total error are overall below the defined limits of acceptability. Of interest is the high degree of agreement between Solea 100 and STA-R MAX with respect to PT (s), which fits perfectly with the theoretical line of identity (y = 0 + 1.00x). No interferences were found within the limits stated by the manufacturer, with some exceptions for APTT with heparin and APTT and PT for higher bilirubin concentrations. CONCLUSIONS: In conclusion, the performance of the Solea 100 optical analyser is satisfactory and adequate for the determination of routine coagulation tests. Moreover, they are perfectly comparable to mechanical systems, such as STA-R MAX and other upper-level analysers, even considering the low interference levels under routine conditions.

19.
Microorganisms ; 9(9)2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34576880

ABSTRACT

K. pneumoniae (KPN) is one of the widest spread bacteria in which combined resistance to several antimicrobial groups is frequent. The most common ß-lactamases found in K. pneumoniae are class A carbapenemases, both chromosomal-encoded (i.e., NMCA, IMI-1) and plasmid-encoded (i.e., GES-enzymes, IMI-2), VIM, IMP, NDM, OXA-48, and extended-spectrum ß-lactamases (ESBLs) such as CTX-M enzymes. In the present study, a total of 68 carbapenem-resistant KPN were collected from twelve long-term care facilities (LTCFs) in the Northern Italian region. The whole-genome sequencing (WGS) of each KPN strain was determined using a MiSeq Illumina sequencing platform and analysed by a bacterial analysis pipeline (BAP) tool. The WGS analysis showed the prevalence of ST307, ST512, and ST37 as major lineages diffused among the twelve LTCFs. The other lineages found were: ST11, ST16, ST35, ST253, ST273, ST321, ST416, ST1519, ST2623, and ST3227. The blaKPC-2, blaKPC-3, blaKPC-9, blaSHV-11, blaSHV-28, blaCTX-M-15, blaOXA-1, blaOXA-9, blaOXA-23, qnrS1, qnrB19, qnrB66, aac(6')-Ib-cr, and fosA were the resistance genes widespread in most LTCFs. In this study, we demonstrated the spreading of thirteen KPN lineages among the LTCFs. Additionally, KPC carbapenemases are the most widespread ß-lactamase.

20.
Molecules ; 26(18)2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34576958

ABSTRACT

Four NDM-1 mutants (L218T, L221T, L269H and L221T/Y229W) were generated in order to investigate the role of leucines positioned in L10 loop. A detailed kinetic analysis stated that these amino acid substitutions modified the hydrolytic profile of NDM-1 against some ß-lactams. Significant reduction of kcat values of L218T and L221T for carbapenems, cefazolin, cefoxitin and cefepime was observed. The stability of the NDM-1 and its mutants was explored by thermofluor assay in real-time PCR. The determination of TmB and TmD demonstrated that NDM-1 and L218T were the most stable enzymes. Molecular dynamic studies were performed to justify the differences observed in the kinetic behavior of the mutants. In particular, L218T fluctuated more than NDM-1 in L10, whereas L221T would seem to cause a drift between residues 75 and 125. L221T/Y229W double mutant exhibited a decrease in the flexibility with respect to L221T, explaining enzyme activity improvement towards some ß-lactams. Distances between Zn1-Zn2 and Zn1-OH- or Zn2-OH- remained unaffected in all systems analysed. Significant changes were found between Zn1/Zn2 and first sphere coordination residues.


Subject(s)
beta-Lactamases/chemistry , beta-Lactamases/metabolism , Amino Acid Substitution , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Cefazolin/chemistry , Cefazolin/metabolism , Cefoxitin/chemistry , Cefoxitin/metabolism , Enzyme Stability , Hydrogen-Ion Concentration , Imipenem/chemistry , Imipenem/metabolism , Kinetics , Leucine/genetics , Meropenem/chemistry , Meropenem/metabolism , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Real-Time Polymerase Chain Reaction , Spectrometry, Fluorescence , beta-Lactamases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...