Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 148
Filter
1.
J Mol Cell Cardiol ; 196: 125-140, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39341589

ABSTRACT

BACKGROUND: Heart failure (HF) is a burgeoning health problem worldwide. Often arising as a result of cardiac injury, HF has become a major cause of mortality with limited availability of effective treatments. Ferroptotic pathways, triggering an iron-dependent form of cell death, are known to be potential key players in heart disease. This form of cell death does not exhibit typical characteristics of programmed cell death, and is mediated by impaired iron metabolism and lipid peroxidation signalling. OBJECTIVES: The aim of this study is to establish an ex-vivo model of myocardial injury in living myocardial slices (LMS) and to identify novel underlying mechanisms and potential therapeutic druggable target(s). METHODS AND RESULTS: In this study, we employed LMS as an ex vivo model of cardiac injury to investigate underlying mechanisms and potential therapeutic targets. Cryoinjury was induced in adult rat LMS, resulting in 30 % tissue damage. Cryoinjured LMS demonstrated impaired contractile function, cardiomyocyte hypertrophy, inflammation, and cardiac fibrosis, closely resembling in vivo cardiac injury characteristics. Proteomic analysis revealed an enrichment of factors associated with ferroptosis in the injured LMS, suggesting a potential causative role. To test this hypothesis, we pharmacologically inhibited ferroptotic pathways using ferrostatin (Fer-1) in the cryoinjured rat LMS, resulting in attenuation of structural changes and repression of pro-fibrotic processes. Furthermore, LMS generated from failing human hearts were used as a model of chronic heart failure. In this model, Fer-1 treatment was observed to reduce the expression of ferroptotic genes, enhances contractile function and improves tissue viability. Blocking ferroptosis-associated pathways in human cardiac fibroblasts (HCFs) resulted in a downregulation of fibroblast activation genes, a decrease in fibroblast migration capacity, and a reduction in reactive oxygen species production. RNA sequencing analysis of Fer-1-treated human LMS implicated metallothioneins as a potential underlying mechanism for the inhibition of these pathways. This effect is possibly mediated through the replenishment of glutathione reserves. CONCLUSIONS: Our findings highlight the potential of targeting ferroptosis-related pathways and metallothioneins as a promising strategy for the treatment of heart disease.

2.
Nat Cardiovasc Res ; 3(2): 186-202, 2024 02.
Article in English | MEDLINE | ID: mdl-39196188

ABSTRACT

Tissue repair after myocardial infarction (MI) is guided by autocrine and paracrine-acting proteins. Deciphering these signals and their upstream triggers is essential when considering infarct healing as a therapeutic target. Here we perform a bioinformatic secretome analysis in mouse cardiac endothelial cells and identify cysteine-rich with EGF-like domains 2 (CRELD2), an endoplasmic reticulum stress-inducible protein with poorly characterized function. CRELD2 was abundantly expressed and secreted in the heart after MI in mice and patients. Creld2-deficient mice and wild-type mice treated with a CRELD2-neutralizing antibody showed impaired de novo microvessel formation in the infarct border zone and developed severe postinfarction heart failure. CRELD2 protein therapy, conversely, improved heart function after MI. Exposing human coronary artery endothelial cells to recombinant CRELD2 induced angiogenesis, associated with a distinct phosphoproteome signature. These findings identify CRELD2 as an angiogenic growth factor and unravel a link between endoplasmic reticulum stress and ischemic tissue repair.


Subject(s)
Endoplasmic Reticulum Stress , Endothelial Cells , Myocardial Infarction , Neovascularization, Physiologic , Animals , Humans , Male , Mice , Angiogenesis Inducing Agents/pharmacology , Angiogenesis Inducing Agents/metabolism , Cells, Cultured , Disease Models, Animal , Endoplasmic Reticulum Stress/drug effects , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Mice, Inbred C57BL , Mice, Knockout , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Neovascularization, Physiologic/drug effects , Signal Transduction/drug effects
3.
Brain ; 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39183150

ABSTRACT

Monogenic diseases are well-suited paradigms for the causal analysis of disease-driving molecular patterns. Spinal Muscular Atrophy (SMA) is one such monogenic model caused by mutation or deletion of the Survival of motor neuron 1 (SMN1) gene. Although several functions of the SMN protein have been studied, single functions and pathways alone do not allow to identify critical disease-driving molecules. Here, we analyzed the systemic characteristics of SMA employing proteomics, phosphoproteomics, translatomics and interactomics from two mouse models with different disease-severities and genetics. This systems approach revealed sub-networks and proteins characterizing commonalities and differences of both models. To link the identified molecular networks with the disease-causing SMN protein, we combined SMN-interactome data with both proteomes creating a comprehensive representation of SMA. By this approach, disease hubs and bottlenecks between SMN and downstream pathways could be identified. Linking a disease-causing molecule with widespread molecular dysregulations via multiomics is a concept for analyses of monogenic diseases.

4.
Article in English | MEDLINE | ID: mdl-39088755

ABSTRACT

Mortality of acute lung injury (ALI) increases with age. Alveolar epithelial type 2 cells (AEII) are the progenitor cells of the alveolar epithelium and crucial for repair after injury. We hypothesize that telomere dysfunction-mediated AEII senescence impairs regeneration and promotes the development of ALI. To discriminate between the impact of old age and AEII senescence in ALI, young (3 months) and old (18 months) Sftpc-Ai9 mice and young Sftpc-Ai9-Trf1 mice with inducible Trf1 knockout-mediated senescence in AEII were treated with 1 µg lipopolysaccharide (LPS)/g BW (n=9-11). Control mice received saline (n=7). Mice were sacrificed 4 or 7 days later. Lung mechanics, pulmonary inflammation and proteomes were analyzed and parenchymal injury, AEII proliferation and AEI differentiation rate were quantified using stereology. Old mice showed 55% mortality by day 4, whereas all young mice survived. Pulmonary inflammation was most severe in old mice, followed by Sftpc-Ai9-Trf1 mice. Young Sftpc-Ai9 mice recovered almost completely by day 7, while Sftpc-Ai9-Trf1 mice still showed mild signs of injury. An expansion of AEII was only measured in young Sftpc-Ai9 mice at day 7. Aging and telomere dysfunction-mediated senescence had no impact on AEI differentiation rate in controls, but the reduced number of AEII in Sftpc-Ai9-Trf1 mice also affected de-novo differentiation after injury. In conclusion, telomere dysfunction-mediated AEII senescence promoted parenchymal inflammation in ALI, but did not enhance mortality like old age. While Differentiation rate remained functional with old age and AEII senescence, AEII proliferative capacity was impaired in ALI, affecting the regenerative ability.

5.
J Infect Dis ; 230(1): 198-208, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052710

ABSTRACT

Staphylococcus aureus is a prevalent pathogen in pneumonia and harbors glycolipids, which may serve as molecular patterns in Mincle (macrophage-inducible C-type lectin)-dependent pathogen recognition. We examined the role of Mincle in lung defense against S aureus in wild-type (WT), Mincle knockout (KO), and Mincle transgenic (tg) mice. Two glycolipids, glucosyl-diacylglycerol (Glc-DAG) and diglucosyl-diacylglycerol (Glc2-DAG), were purified, of which only Glc-DAG triggered Mincle reporter cell activation and professional phagocyte responses. Proteomic profiling revealed that Glc2-DAG blocked Glc-DAG-induced cytokine responses, thereby acting as inhibitor of Glc-DAG/Mincle signaling. WT mice responded to S aureus with a similar lung pathology as Mincle KO mice, most likely due to Glc2-DAG-dependent inhibition of Glc-DAG/Mincle signaling. In contrast, ectopic Mincle expression caused severe lung pathology in S aureus-infected mice, characterized by bacterial outgrowth and fatal pneumonia. Collectively, Glc2-DAG inhibits Glc-DAG/Mincle-dependent responses in WT mice, whereas sustained Mincle expression overrides Glc2-DAG-mediated inhibitory effects, conferring increased host susceptibility to S aureus.


Subject(s)
Lectins, C-Type , Membrane Proteins , Mice, Knockout , Pneumonia, Staphylococcal , Staphylococcus aureus , Animals , Lectins, C-Type/metabolism , Lectins, C-Type/genetics , Pneumonia, Staphylococcal/microbiology , Pneumonia, Staphylococcal/immunology , Mice , Membrane Proteins/genetics , Membrane Proteins/metabolism , Lung/microbiology , Lung/pathology , Mice, Transgenic , Mice, Inbred C57BL , Signal Transduction , Disease Susceptibility , Cytokines/metabolism
6.
Sci Rep ; 14(1): 16459, 2024 07 16.
Article in English | MEDLINE | ID: mdl-39013942

ABSTRACT

Beneficial effects of sodium glucose co-transporter 2 inhibitors (SGLT2is) in cardiovascular diseases have been extensively reported leading to the inclusion of these drugs in the treatment guidelines for heart failure. However, molecular actions especially on non-myocyte cells remain uncertain. We observed dose-dependent inhibitory effects of two SGLT2is, dapagliflozin (DAPA) and empagliflozin (EMPA), on inflammatory signaling in human umbilical vein endothelial cells. Proteomic analyses and subsequent enrichment analyses discovered profound effects of these SGLT2is on proteins involved in mitochondrial respiration and actin cytoskeleton. Validation in functional oxygen consumption measurements as well as tube formation and migration assays revealed strong impacts of DAPA. Considering that most influenced parameters played central roles in endothelial to mesenchymal transition (EndMT), we performed in vitro EndMT assays and identified substantial reduction of mesenchymal and fibrosis marker expression as well as changes in cellular morphology upon treatment with SGLT2is. In line, human cardiac fibroblasts exposed to DAPA showed less proliferation, reduced ATP production, and decelerated migration capacity while less extensive impacts were observed upon EMPA. Mechanistically, sodium proton exchanger 1 (NHE1) as well as sodium-myoinositol cotransporter (SMIT) and sodium-multivitamin cotransporter (SMVT) could be identified as relevant targets of SGLT2is in non-myocyte cardiovascular cells as validated by individual siRNA-knockdown experiments. In summary, we found comprehensive beneficial effects of SGLT2is on human endothelial cells and cardiac fibroblasts. The results of this study therefore support a distinct effect of selected SGLT2i on non-myocyte cardiovascular cells and grant further insights into potential molecular mode of action of these drugs.


Subject(s)
Benzhydryl Compounds , Fibroblasts , Glucosides , Human Umbilical Vein Endothelial Cells , Sodium-Glucose Transporter 2 Inhibitors , Humans , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Benzhydryl Compounds/pharmacology , Glucosides/pharmacology , Fibroblasts/drug effects , Fibroblasts/metabolism , Epithelial-Mesenchymal Transition/drug effects , Sodium-Hydrogen Exchanger 1/metabolism , Sodium-Hydrogen Exchanger 1/antagonists & inhibitors , Cell Movement/drug effects , Cell Proliferation/drug effects
7.
FEBS J ; 291(15): 3539-3552, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38708720

ABSTRACT

Mucins are major components of the mucus. Besides the highly O-glycosylated tandem repeat domains, mucins contain Cys domains (CysDs). CysDs contain conserved disulfide-forming cysteine residues as well as a WxxW motif. Since this is the consensus sequence for tryptophan C-mannosylation, mucin CysDs have been suggested to be targets for C-mannosyltransferases, but this has never been directly shown. Here, we recombinantly expressed human mucin CysDs in Chinese hamster ovary (CHO) cells and analyzed the C-mannosylation status. Mass spectrometric analysis revealed that the putative C-mannose site is not or only barely C-mannosylated. However, mutation of the adjacent cysteine residues enabled C-mannosylation to occur. In contrast to mucin CysDs, the homologous CysD of human cartilage intermediate layer protein 1 (CILP1) lacks these cysteine residues preceding the WxxW motif. We show that CILP1 CysD is C-mannosylated, but introducing a cysteine at the -2 position causes this modification to be lost. We thus conclude that the presence of cysteine residues prevents the modification of the WxxW motif in CysDs.


Subject(s)
Cricetulus , Cysteine , Mannose , Cysteine/metabolism , Cysteine/genetics , Cysteine/chemistry , Humans , Animals , CHO Cells , Mannose/metabolism , Mannose/chemistry , Glycosylation , Mucins/metabolism , Mucins/chemistry , Mucins/genetics , Protein Domains , Amino Acid Sequence , Amino Acid Motifs , Conserved Sequence , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/chemistry
8.
Basic Res Cardiol ; 119(4): 613-632, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38639887

ABSTRACT

Hypertrophic cardiomyopathy (HCM) constitutes the most common genetic cardiac disorder. However, current pharmacotherapeutics are mainly symptomatic and only partially address underlying molecular mechanisms. Circular RNAs (circRNAs) are a recently discovered class of non-coding RNAs and emerged as specific and powerful regulators of cellular functions. By performing global circRNA-specific next generation sequencing in cardiac tissue of patients with hypertrophic cardiomyopathy compared to healthy donors, we identified circZFPM2 (hsa_circ_0003380). CircZFPM2, which derives from the ZFPM2 gene locus, is a highly conserved regulatory circRNA that is strongly induced in HCM tissue. In vitro loss-of-function experiments were performed in neonatal rat cardiomyocytes, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), and HCM-patient-derived hiPSC-CMs. A knockdown of circZFPM2 was found to induce cardiomyocyte hypertrophy and compromise mitochondrial respiration, leading to an increased production of reactive oxygen species and apoptosis. In contrast, delivery of recombinant circZFPM2, packaged in lipid-nanoparticles or using AAV-based overexpression, rescued cardiomyocyte hypertrophic gene expression and promoted cell survival. Additionally, HCM-derived cardiac organoids exhibited improved contractility upon CM-specific overexpression of circZFPM2. Multi-Omics analysis further promoted our hypothesis, showing beneficial effects of circZFPM2 on cardiac contractility and mitochondrial function. Collectively, our data highlight that circZFPM2 serves as a promising target for the treatment of cardiac hypertrophy including HCM.


Subject(s)
Apoptosis , Cardiomyopathy, Hypertrophic , Cell Survival , Induced Pluripotent Stem Cells , Myocytes, Cardiac , RNA, Circular , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , RNA, Circular/metabolism , RNA, Circular/genetics , Humans , Animals , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/pathology , Cardiomyopathy, Hypertrophic/metabolism , Induced Pluripotent Stem Cells/metabolism , Rats , Apoptosis/genetics , Cells, Cultured , Reactive Oxygen Species/metabolism , RNA/genetics , Animals, Newborn , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Mitochondria, Heart/genetics , Transcription Factors/metabolism , Transcription Factors/genetics
10.
Proc Natl Acad Sci U S A ; 121(11): e2312874121, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38451943

ABSTRACT

The success of bacterial pathogens depends on the coordinated expression of virulence determinants. Regulatory circuits that drive pathogenesis are complex, multilayered, and incompletely understood. Here, we reveal that alterations in tRNA modifications define pathogenic phenotypes in the opportunistic pathogen Pseudomonas aeruginosa. We demonstrate that the enzymatic activity of GidA leads to the introduction of a carboxymethylaminomethyl modification in selected tRNAs. Modifications at the wobble uridine base (cmnm5U34) of the anticodon drives translation of transcripts containing rare codons. Specifically, in P. aeruginosa the presence of GidA-dependent tRNA modifications modulates expression of genes encoding virulence regulators, leading to a cellular proteomic shift toward pathogenic and well-adapted physiological states. Our approach of profiling the consequences of chemical tRNA modifications is general in concept. It provides a paradigm of how environmentally driven tRNA modifications govern gene expression programs and regulate phenotypic outcomes responsible for bacterial adaption to challenging habitats prevailing in the host niche.


Subject(s)
Proteomics , Pseudomonas aeruginosa , Virulence/genetics , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism , Anticodon , Bacteria/metabolism
11.
Eur J Neurosci ; 59(7): 1519-1535, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38185886

ABSTRACT

Harmful alcohol consumption is a major socioeconomic burden to the health system, as it can be the cause of mortality of heavy alcohol drinkers. The dopaminergic (DAergic) system is thought to play an important role in the pathogenesis of alcohol drinking behaviour; however, its exact role remains elusive. Fibroblast growth factor 2 (FGF-2), a neurotrophic factor, associated with both the DAergic system and alcohol consumption, may play an important role in DAergic neuroadaptations during alcohol abuse. Within this study, we aimed to clarify the role of endogenous FGF-2 on the DAergic system and whether there is a possible link to alcohol consumption. We found that lack of FGF-2 reduces the alcohol intake of mice. Transcriptome analysis of DAergic neurons revealed that FGF-2 knockout (FGF-2 KO) shifts the molecular fingerprint of midbrain dopaminergic (mDA) neurons to DA subtypes of the ventral tegmental area (VTA). In line with this, proteomic changes predominantly appear also in the VTA. Interestingly, these changes led to an altered regulation of the FGF-2 signalling cascades and DAergic pathways in a region-specific manner, which was only marginally affected by voluntary alcohol consumption. Thus, lack of FGF-2 not only affects the gene expression but also the proteome of specific brain regions of mDA neurons. Our study provides new insights into the neuroadaptations of the DAergic system during alcohol abuse and, therefore, comprises novel targets for future pharmacological interventions.


Subject(s)
Alcoholism , Ventral Tegmental Area , Mice , Animals , Ventral Tegmental Area/metabolism , Dopaminergic Neurons/metabolism , Fibroblast Growth Factor 2/metabolism , Alcoholism/genetics , Alcoholism/metabolism , Proteomics , Alcohol Drinking
12.
PLoS Pathog ; 19(9): e1011657, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37747932

ABSTRACT

Inhibitors of bromodomain and extra-terminal proteins (iBETs), including JQ-1, have been suggested as potential prophylactics against SARS-CoV-2 infection. However, molecular mechanisms underlying JQ-1-mediated antiviral activity and its susceptibility to viral subversion remain incompletely understood. Pretreatment of cells with iBETs inhibited infection by SARS-CoV-2 variants and SARS-CoV, but not MERS-CoV. The antiviral activity manifested itself by reduced reporter expression of recombinant viruses, and reduced viral RNA quantities and infectious titers in the culture supernatant. While we confirmed JQ-1-mediated downregulation of expression of angiotensin-converting enzyme 2 (ACE2) and interferon-stimulated genes (ISGs), multi-omics analysis addressing the chromatin accessibility, transcriptome and proteome uncovered induction of an antiviral nuclear factor erythroid 2-related factor 2 (NRF-2)-mediated cytoprotective response as an additional mechanism through which JQ-1 inhibits SARS-CoV-2 replication. Pharmacological inhibition of NRF-2, and knockdown of NRF-2 and its target genes reduced JQ-1-mediated inhibition of SARS-CoV-2 replication. Serial passaging of SARS-CoV-2 in the presence of JQ-1 resulted in predominance of ORF6-deficient variant, which exhibited resistance to JQ-1 and increased sensitivity to exogenously administered type I interferon (IFN-I), suggesting a minimised need for SARS-CoV-2 ORF6-mediated repression of IFN signalling in the presence of JQ-1. Importantly, JQ-1 exhibited a transient antiviral activity when administered prophylactically in human airway bronchial epithelial cells (hBAECs), which was gradually subverted by SARS-CoV-2, and no antiviral activity when administered therapeutically following an established infection. We propose that JQ-1 exerts pleiotropic effects that collectively induce an antiviral state in the host, which is ultimately nullified by SARS-CoV-2 infection, raising questions about the clinical suitability of the iBETs in the context of COVID-19.


Subject(s)
COVID-19 , Interferon Type I , Humans , SARS-CoV-2/metabolism , Interferon Type I/pharmacology , Viral Proteins/metabolism , Antiviral Agents/pharmacology
13.
Stem Cell Rev Rep ; 19(8): 2957-2979, 2023 11.
Article in English | MEDLINE | ID: mdl-37751010

ABSTRACT

The potential therapeutic role of the Dental Pulp Stem Cells Secretome (SECR) in a rat model of experimentally induced Temporomandibular Joint (TMJ) Osteoarthritis (OA) was evaluated. Proteomic profiling of the human SECR under specific oxygen tension (5% O2) and stimulation with Tumor Necrosis Factor-alpha (TNF-α) was performed. SECR and respective cell lysates (CL) samples were collected and subjected to SDS-PAGE, followed by LC-MS/MS analysis. The identified proteins were analyzed with Bioinformatic tools. The anti-inflammatory properties of SECR were assessed via an in vitro murine macrophages model, and were further validated in vivo, in a rat model of chemically-induced TMJ-OA by weekly recording of the head withdrawal threshold, the food intake, and the weight change, and radiographically and histologically at 4- and 8-weeks post-treatment. SECR analysis revealed the presence of 50 proteins that were enriched and/or statistically significantly upregulated compared to CL, while many of those proteins were involved in pathways related to "extracellular matrix organization" and "immune system". SECR application in vitro led to a significant downregulation on the expression of pro-inflammatory genes (MMP-13, MMP-9, MMP-3 and MCP-1), while maintaining an increased expression of IL-10 and IL-6. SECR application in vivo had a significant positive effect on all the clinical parameters, resulting in improved food intake, weight, and pain suppression. Radiographically, SECR application had a significant positive effect on trabecular bone thickness and bone density compared to the saline-treated group. Histological analysis indicated that SECR administration reduced inflammation, enhanced ECM and subchondral bone repair and regeneration, thus alleviating TMJ degeneration.


Subject(s)
Osteoarthritis , Proteomics , Rats , Humans , Mice , Animals , Chromatography, Liquid , Secretome , Tandem Mass Spectrometry , Temporomandibular Joint/metabolism , Temporomandibular Joint/pathology , Osteoarthritis/therapy , Osteoarthritis/genetics , Stem Cells/metabolism
14.
Am J Physiol Lung Cell Mol Physiol ; 325(3): L352-L359, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37461840

ABSTRACT

Obesity is mostly associated with adverse health consequences, but may also elicit favorable effects under chronic conditions. This "obesity paradox" is under debate for pulmonary diseases. As confounding factors complicate conclusions from human studies, this study used a controlled animal model combining diet-induced obesity and chronic hypoxia as a model for pulmonary hypertension and chronic obstructive pulmonary disease. Male C57BL/6 mice were fed control or high-fat diet for 30 wk, and half of the animals were exposed to chronic hypoxia (13% O2) for 3 wk. Hypoxia induced right ventricular hypertrophy, thickening of pulmonary arterial and capillary walls, higher lung volumes, and increased hemoglobin concentrations irrespective of the body weight. In contrast, lung proteomes differed substantially between lean- and obese-hypoxic mice. Many of the observed changes were linked to vascular and extracellular matrix (ECM) proteins. In lean-hypoxic animals, circulating platelets were reduced and abundances of various clotting-related proteins were altered, indicating a hypercoagulable phenotype. Moreover, the septal ECM composition was changed, and airspaces were significantly distended pointing to lung hyperinflation. These differences were mostly absent in the obese-hypoxic group. However, the obesity-hypoxia combination induced the lowest blood CO2 concentrations, indicating hyperventilation for sufficient oxygen supply. Moreover, endothelial surface areas were increased in obese-hypoxic mice. Thus, obesity exerts differential effects on lung adaptation to hypoxia, which paradoxically include not only adverse but also rather protective changes. These differences have a molecular basis in the lung proteome and may influence the pathogenesis of lung diseases. This should be taken into account for future individualized prevention and therapy.NEW & NOTEWORTHY An "obesity paradox" is discussed for pulmonary diseases. By linking lung proteome analyses to pulmonary structure and function, we demonstrate that diet-induced obesity affects lung adaptation to chronic hypoxia in various ways. The observed changes include not only adverse but also protective effects and are associated with altered abundances of vascular and extracellular matrix proteins. These results highlight the existence of relevant differences in individuals with obesity that may influence the pathogenesis of lung diseases.


Subject(s)
Hypertension, Pulmonary , Proteome , Humans , Mice , Animals , Male , Mice, Inbred C57BL , Lung/pathology , Obesity , Hypertension, Pulmonary/pathology , Hypoxia/metabolism
15.
Cells ; 12(5)2023 02 21.
Article in English | MEDLINE | ID: mdl-36899812

ABSTRACT

Measure of drug-mediated immune reactions that are dependent on the patient's genotype determine individual medication protocols. Despite extensive clinical trials prior to the license of a specific drug, certain patient-specific immune reactions cannot be reliably predicted. The need for acknowledgement of the actual proteomic state for selected individuals under drug administration becomes obvious. The well-established association between certain HLA molecules and drugs or their metabolites has been analyzed in recent years, yet the polymorphic nature of HLA makes a broad prediction unfeasible. Dependent on the patient's genotype, carbamazepine (CBZ) hypersensitivities can cause diverse disease symptoms as maculopapular exanthema, drug reaction with eosinophilia and systemic symptoms or the more severe diseases Stevens-Johnson-Syndrome or toxic epidermal necrolysis. Not only the association between HLA-B*15:02 or HLA-A*31:01 but also between HLA-B*57:01 and CBZ administration could be demonstrated. This study aimed to illuminate the mechanism of HLA-B*57:01-mediated CBZ hypersensitivity by full proteome analysis. The main CBZ metabolite EPX introduced drastic proteomic alterations as the induction of inflammatory processes through the upstream kinase ERBB2 and the upregulation of NFκB and JAK/STAT pathway implying a pro-apoptotic, pro-necrotic shift in the cellular response. Anti-inflammatory pathways and associated effector proteins were downregulated. This disequilibrium of pro- and anti-inflammatory processes clearly explain fatal immune reactions following CBZ administration.


Subject(s)
Drug Hypersensitivity , Stevens-Johnson Syndrome , Humans , Janus Kinases , Anticonvulsants/therapeutic use , Up-Regulation , Proteomics , STAT Transcription Factors/genetics , Signal Transduction , Carbamazepine , HLA-B Antigens/genetics , Stevens-Johnson Syndrome/etiology , Stevens-Johnson Syndrome/genetics , NF-kappa B/genetics
16.
Am J Physiol Lung Cell Mol Physiol ; 324(4): L480-L492, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36802219

ABSTRACT

A chronic proinflammatory milieu (inflamm-aging) is observed in the elderly and associated with poorer prognosis in acute lung injury (ALI). Gut microbiome-derived short-chain fatty acids (SCFAs) are known to have immunomodulatory capabilities, but their function in the gut-lung axis in aging is poorly understood. Here, we analyzed the gut microbiome and its impact on inflammatory signaling in the aging lung and tested the effects of SCFAs in young (3 mo) and old (18 mo) mice that received either drinking water with a mixture of each 50 mM acetate, butyrate, and propionate for 2 wk or water alone. ALI was induced by intranasal lipopolysaccharide (LPS; n = 12/group) administration. Controls (n = 8/group) received saline. Fecal pellets were sampled for gut microbiome analysis before and after LPS/saline treatment. The left lung lobe was collected for stereology and right lung lobes for cytokine and gene expression analysis, inflammatory cell activation, and proteomics. Different gut microbial taxa, such as Bifidobacterium, Faecalibaculum, and Lactobacillus correlated positively with pulmonary inflammation in aging, suggesting an impact on inflamm-aging in the gut-lung axis. The supplementation of SCFAs reduced inflamm-aging, oxidative stress, metabolic alteration, and enhanced activation of myeloid cells in the lungs of old mice. The enhanced inflammatory signaling in ALI of old mice was also reduced by SCFA treatment. In summary, the study provides new evidence that SCFAs play a beneficial role in the gut-lung axis of the aging organism by reducing pulmonary inflamm-aging and ameliorating enhanced severity of ALI in old mice.


Subject(s)
Acute Lung Injury , Lipopolysaccharides , Mice , Animals , Lipopolysaccharides/pharmacology , Fatty Acids, Volatile , Aging , Lung/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy
17.
Proc Natl Acad Sci U S A ; 120(2): e2217437120, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36598940

ABSTRACT

Sheet-like membrane protrusions at the leading edge, termed lamellipodia, drive 2D-cell migration using active actin polymerization. Microspikes comprise actin-filament bundles embedded within lamellipodia, but the molecular mechanisms driving their formation and their potential functional relevance have remained elusive. Microspike formation requires the specific activity of clustered Ena/VASP proteins at their tips to enable processive actin assembly in the presence of capping protein, but the factors and mechanisms mediating Ena/VASP clustering are poorly understood. Systematic analyses of B16-F1 melanoma mutants lacking potential candidate proteins revealed that neither inverse BAR-domain proteins, nor lamellipodin or Abi is essential for clustering, although they differentially contribute to lamellipodial VASP accumulation. In contrast, unconventional myosin-X (MyoX) identified here as proximal to VASP was obligatory for Ena/VASP clustering and microspike formation. Interestingly, and despite the invariable distribution of other relevant marker proteins, the width of lamellipodia in MyoX-KO mutants was significantly reduced as compared with B16-F1 control, suggesting that microspikes contribute to lamellipodium stability. Consistently, MyoX removal caused marked defects in protrusion and random 2D-cell migration. Strikingly, Ena/VASP-deficiency also uncoupled MyoX cluster dynamics from actin assembly in lamellipodia, establishing their tight functional association in microspike formation.


Subject(s)
Actins , Synapsins , Mice , Actins/metabolism , Cell Movement , Myosins/genetics , Myosins/metabolism , Phosphoproteins/metabolism , Pseudopodia/metabolism , Synapsins/metabolism , Animals , Cell Line, Tumor
18.
Nat Commun ; 13(1): 7402, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36456567

ABSTRACT

Pseudomonas aeruginosa is a major cause of nosocomial infections and also leads to severe exacerbations in cystic fibrosis or chronic obstructive pulmonary disease. Three intertwined quorum sensing systems control virulence of P. aeruginosa, with the rhl circuit playing the leading role in late and chronic infections. The majority of traits controlled by rhl transcription factor RhlR depend on PqsE, a dispensable thioesterase in Pseudomonas Quinolone Signal (PQS) biosynthesis that interferes with RhlR through an enigmatic mechanism likely involving direct interaction of both proteins. Here we show that PqsE and RhlR form a 2:2 protein complex that, together with RhlR agonist N-butanoyl-L-homoserine lactone (C4-HSL), solubilizes RhlR and thereby renders the otherwise insoluble transcription factor active. We determine crystal structures of the complex and identify residues essential for the interaction. To corroborate the chaperone-like activity of PqsE, we design stability-optimized variants of RhlR that bypass the need for C4-HSL and PqsE in activating PqsE/RhlR-controlled processes of P. aeruginosa. Together, our data provide insight into the unique regulatory role of PqsE and lay groundwork for developing new P. aeruginosa-specific pharmaceuticals.


Subject(s)
Protein Folding , Pseudomonas aeruginosa , Virulence , Pseudomonas aeruginosa/genetics , Transcription Factors
19.
Int J Mol Sci ; 23(17)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36077344

ABSTRACT

C. novyi type A produces the alpha-toxin (TcnA) that belongs to the large clostridial glucosylating toxins (LCGTs) and is able to modify small GTPases by N-acetylglucosamination on conserved threonine residues. In contrast, other LCGTs including Clostridioides difficile toxin A and toxin B (TcdA; TcdB) modify small GTPases by mono-o-glucosylation. Both modifications inactivate the GTPases and cause strong effects on GTPase-dependent signal transduction pathways and the consequent reorganization of the actin cytoskeleton leading to cell rounding and finally cell death. However, the effect of TcnA on target cells is largely unexplored. Therefore, we performed a comprehensive screening approach of TcnA treated HEp-2 cells and analyzed their proteome and their phosphoproteome using LC-MS-based methods. With this data-dependent acquisition (DDA) approach, 5086 proteins and 9427 phosphosites could be identified and quantified. Of these, 35 proteins were found to be significantly altered after toxin treatment, and 1832 phosphosites were responsive to TcnA treatment. By analyzing the TcnA-induced proteomic effects of HEp-2 cells, 23 common signaling pathways were identified to be altered, including Actin Cytoskeleton Signaling, Epithelial Adherens Junction Signaling, and Signaling by Rho Family GTPases. All these pathways are also regulated after application of TcdA or TcdB of C. difficile. After TcnA treatment the regulation on phosphorylation level was much stronger compared to the proteome level, in terms of both strength of regulation and the number of regulated phosphosites. Interestingly, various signaling pathways such as Signaling by Rho Family GTPases or Integrin Signaling were activated on proteome level while being inhibited on phosphorylation level or vice versa as observed for the Role of BRCA1 in DNA Damage Response. ZIP kinase, as well as Calmodulin-dependent protein kinases IV & II, were observed as activated while Aurora-A kinase and CDK kinases tended to be inhibited in cells treated with TcnA based on their substrate regulation pattern.


Subject(s)
Bacterial Toxins , Clostridioides difficile , Monomeric GTP-Binding Proteins , Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Enterotoxins/chemistry , Glycosylation , Monomeric GTP-Binding Proteins/metabolism , Proteome/metabolism , Proteomics/methods , Type C Phospholipases/metabolism , rho GTP-Binding Proteins/metabolism
20.
Science ; 376(6599): 1343-1347, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35709278

ABSTRACT

Effective tissue repair after myocardial infarction entails a vigorous angiogenic response, guided by incompletely defined immune cell-endothelial cell interactions. We identify the monocyte- and macrophage-derived cytokine METRNL (meteorin-like) as a driver of postinfarction angiogenesis and high-affinity ligand for the stem cell factor receptor KIT (KIT receptor tyrosine kinase). METRNL mediated angiogenic effects in cultured human endothelial cells through KIT-dependent signaling pathways. In a mouse model of myocardial infarction, METRNL promoted infarct repair by selectively expanding the KIT-expressing endothelial cell population in the infarct border zone. Metrnl-deficient mice failed to mount this KIT-dependent angiogenic response and developed severe postinfarction heart failure. Our data establish METRNL as a KIT receptor ligand in the context of ischemic tissue repair.


Subject(s)
Adipokines , Cytokines , Myocardial Infarction , Neovascularization, Physiologic , Nerve Growth Factors , Proto-Oncogene Proteins c-kit , Animals , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , Endothelial Cells/metabolism , Heart Failure/etiology , Heart Failure/genetics , Ligands , Macrophages/metabolism , Mice , Mice, Mutant Strains , Myocardial Infarction/complications , Myocardial Infarction/physiopathology , Nerve Growth Factors/genetics , Nerve Growth Factors/metabolism , Proto-Oncogene Proteins c-kit/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL