Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 242
Filter
1.
Biomark Res ; 12(1): 50, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735945

ABSTRACT

Cell- and antibody-based CD19-directed therapies have demonstrated great potential for treating B-cell non-Hodgkin lymphoma (B-NHL). However, all these approaches suffer from limited response rates and considerable toxicity. Until now, therapy decisions have been routinely based on histopathological CD19 staining of a single lesion at initial diagnosis or relapse, disregarding heterogeneity and temporal alterations in antigen expression. To visualize in vivo CD19 expression noninvasively, we radiolabeled anti-human CD19 monoclonal antibodies with copper-64 (64Cu-αCD19) for positron emission tomography (CD19-immunoPET). 64Cu-αCD19 specifically bound to subcutaneous Daudi xenograft mouse models in vivo. Importantly, 64Cu-αCD19 did not affect the anti-lymphoma cytotoxicity of CD19 CAR-T cells in vitro. Following our preclinical validation, 64Cu-αCD19 was injected into four patients with follicular lymphoma, diffuse large B-cell lymphoma or mantle zone lymphoma. We observed varying 64Cu-αCD19 PET uptake patterns at different lymphoma sites, both within and among patients, correlating with ex vivo immunohistochemical CD19 expression. Moreover, one patient exhibited enhanced uptake in the spleen compared to that in patients with prior B-cell-depleting therapy, indicating that 64Cu-αCD19 is applicable for identifying B-cell-rich organs. In conclusion, we demonstrated the specific targeting and visualization of CD19+ B-NHL in mice and humans by CD19-immunoPET. The intra- and interindividual heterogeneous 64Cu-αCD19 uptake patterns of lymphoma lesions indicate variability in CD19 expression, suggesting the potential of CD19-immunoPET as a novel tool to guide CD19-directed therapies.

2.
Cell Metab ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38718791

ABSTRACT

The role and molecular mechanisms of intermittent fasting (IF) in non-alcoholic steatohepatitis (NASH) and its transition to hepatocellular carcinoma (HCC) are unknown. Here, we identified that an IF 5:2 regimen prevents NASH development as well as ameliorates established NASH and fibrosis without affecting total calorie intake. Furthermore, the IF 5:2 regimen blunted NASH-HCC transition when applied therapeutically. The timing, length, and number of fasting cycles as well as the type of NASH diet were critical parameters determining the benefits of fasting. Combined proteome, transcriptome, and metabolome analyses identified that peroxisome-proliferator-activated receptor alpha (PPARα) and glucocorticoid-signaling-induced PCK1 act co-operatively as hepatic executors of the fasting response. In line with this, PPARα targets and PCK1 were reduced in human NASH. Notably, only fasting initiated during the active phase of mice robustly induced glucocorticoid signaling and free-fatty-acid-induced PPARα signaling. However, hepatocyte-specific glucocorticoid receptor deletion only partially abrogated the hepatic fasting response. In contrast, the combined knockdown of Ppara and Pck1 in vivo abolished the beneficial outcomes of fasting against inflammation and fibrosis. Moreover, overexpression of Pck1 alone or together with Ppara in vivo lowered hepatic triglycerides and steatosis. Our data support the notion that the IF 5:2 regimen is a promising intervention against NASH and subsequent liver cancer.

3.
J Neuroinflammation ; 21(1): 129, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745337

ABSTRACT

Diet-induced increase in body weight is a growing health concern worldwide. Often accompanied by a low-grade metabolic inflammation that changes systemic functions, diet-induced alterations may contribute to neurodegenerative disorder progression as well. This study aims to non-invasively investigate diet-induced metabolic and inflammatory effects in the brain of an APPPS1 mouse model of Alzheimer's disease. [18F]FDG, [18F]FTHA, and [18F]GE-180 were used for in vivo PET imaging in wild-type and APPPS1 mice. Ex vivo flow cytometry and histology in brains complemented the in vivo findings. 1H- magnetic resonance spectroscopy in the liver, plasma metabolomics and flow cytometry of the white adipose tissue were used to confirm metaflammatory condition in the periphery. We found disrupted glucose and fatty acid metabolism after Western diet consumption, with only small regional changes in glial-dependent neuroinflammation in the brains of APPPS1 mice. Further ex vivo investigations revealed cytotoxic T cell involvement in the brains of Western diet-fed mice and a disrupted plasma metabolome. 1H-magentic resonance spectroscopy and immunological results revealed diet-dependent inflammatory-like misbalance in livers and fatty tissue. Our multimodal imaging study highlights the role of the brain-liver-fat axis and the adaptive immune system in the disruption of brain homeostasis in amyloid models of Alzheimer's disease.


Subject(s)
Adaptive Immunity , Amyloidosis , Brain , Diet, Western , Disease Models, Animal , Mice, Transgenic , Animals , Mice , Brain/metabolism , Brain/pathology , Brain/diagnostic imaging , Brain/immunology , Amyloidosis/metabolism , Amyloidosis/pathology , Amyloidosis/immunology , Diet, Western/adverse effects , Mice, Inbred C57BL , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/immunology
4.
NMR Biomed ; : e5157, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589764

ABSTRACT

Cellular senescence is characterized by stable cell cycle arrest. Senescent cells exhibit a senescence-associated secretory phenotype that can promote tumor progression. The aim of our study was to identify specific nuclear magnetic resonance (NMR) spectroscopy-based markers of cancer cell senescence. For metabolic studies, we employed murine liver carcinoma Harvey Rat Sarcoma Virus (H-Ras) cells, in which reactivation of p53 expression induces senescence. Senescent and nonsenescent cell extracts were subjected to high-resolution proton (1H)-NMR spectroscopy-based metabolomics, and dynamic metabolic changes during senescence were analyzed using a magnetic resonance spectroscopy (MRS)-compatible cell perfusion system. Additionally, the ability of intact senescent cells to degrade the extracellular matrix (ECM) was quantified in the cell perfusion system. Analysis of senescent H-Ras cell extracts revealed elevated sn-glycero-3-phosphocholine, myoinositol, taurine, and creatine levels, with decreases in glycine, o-phosphocholine, threonine, and valine. These metabolic findings were accompanied by a greater degradation index of the ECM in senescent H-Ras cells than in control H-Ras cells. MRS studies with the cell perfusion system revealed elevated creatine levels in senescent cells on Day 4, confirming the 1H-NMR results. These senescence-associated changes in metabolism and ECM degradation strongly impact growth and redox metabolism and reveal potential MRS signals for detecting senescent cancer cells in vivo.

5.
Clin Transl Med ; 14(2): e1550, 2024 02.
Article in English | MEDLINE | ID: mdl-38332687

ABSTRACT

BACKGROUND: Breast cancer is a metabolically heterogeneous disease, and although the concept of heterogeneous cancer metabolism is known, its precise role in human breast cancer is yet to be fully elucidated. METHODS: We investigated in an explorative approach a cohort of 42 primary mamma carcinoma patients with positron emission tomography/magnetic resonance imaging (PET/MR) prior to surgery, followed by histopathology and molecular diagnosis. From a subset of patients, which showed high metabolic heterogeneity based on tracer uptake and pathology classification, tumour centre and periphery specimen tissue samples were further investigated by a targeted breast cancer gene expression panel and quantitative metabolomics by nuclear magnetic resonance (NMR) spectroscopy. All data were analysed in a combinatory approach. RESULTS: [18 F]FDG (2-deoxy-2-[fluorine-18]fluoro-d-glucose) tracer uptake confirmed dominance of glucose metabolism in the breast tumour centre, with lower levels in the periphery. Additionally, we observed differences in lipid and proliferation related genes between luminal A and B subtypes in the centre and periphery. Tumour periphery showed elevated acetate levels and enrichment in lipid metabolic pathways genes especially in luminal B. Furthermore, serine was increased in the periphery and higher expression of thymidylate synthase (TYMS) indicated one-carbon metabolism increased in tumour periphery. The overall metabolic activity based on [18 F]FDG uptake of luminal B subtype was higher than that of luminal A and the difference between the periphery and centre increased with tumour grade. CONCLUSION: Our analysis indicates variations in metabolism among different breast cancer subtypes and sampling locations which details the heterogeneity of the breast tumours. Correlation analysis of [18 F]FDG tracer uptake, transcriptome and tumour metabolites like acetate and serine facilitate the search for new candidates for metabolic tracers and permit distinguishing luminal A and B. This knowledge may help to differentiate subtypes preclinically or to provide patients guide for neoadjuvant therapy and optimised surgical protocols based on individual tumour metabolism.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Fluorodeoxyglucose F18/metabolism , Gene Expression Profiling , Acetates , Serine , Lipids
6.
Theranostics ; 14(3): 1212-1223, 2024.
Article in English | MEDLINE | ID: mdl-38323317

ABSTRACT

Background: The tumor-associated disialoganglioside GD2 is a bona fide immunotherapy target in neuroblastoma and other childhood tumors, including Ewing sarcoma and osteosarcoma. GD2-targeting antibodies proved to be effective in neuroblastoma and GD2-targeting chimeric antigen receptors (CAR)- expressing T cells as well as natural killer T cells (NKTs) are emerging. However, assessment of intra- and intertumoral heterogeneity has been complicated by ineffective immunohistochemistry as well as sampling bias in disseminated disease. Therefore, a non-invasive approach for the assessment and visualization of GD2 expression in-vivo is of upmost interest and might enable a more appropriate treatment stratification. Methods: Recently, [64Cu]Cu-NOTA-ch14.18/CHO (64Cu-GD2), a radiolabeled GD2-antibody for imaging with Positron-Emission-Tomography (PET) was developed. We here report our first clinical patients' series (n = 11) in different pediatric tumors assessed with 64Cu-GD2 PET/MRI. GD2-expression in tumors and tissue uptake in organs was evaluated by semiquantitative measurements of standardized uptake values (SUV) with PET/MRI on day 1 p.i. (n = 11) as well as on day 2 p.i. (n = 6). Results: In 8 of 9 patients with suspicious tumor lesions on PET/MRI at least one metastasis showed an increased 64Cu-GD2 uptake and a high tracer uptake (SUVmax > 10) was measured in 4 of those 8 patients. Of note, sufficient image quality with high tumor to background contrast was readily achieved on day 1. In case of 64Cu-GD2-positive lesions, an excellent tumor to background ratio (at least 6:1) was observed in bones, muscles or lungs, while lower tumor to background contrast was seen in the spleen, liver and kidneys. Furthermore, we demonstrated extensive tumor heterogeneity between patients as well as among different metastatic sites in individual patients. Dosimetry assessment revealed a whole-body dose of only 0.03 mGy/MBq (range 0.02-0.04). Conclusion: 64Cu-GD2 PET/MRI enables the non-invasive assessment of individual heterogeneity of GD2 expression, which challenges our current clinical practice of patient selection, stratification and immunotherapy application scheme for treatment with anti-GD2 directed therapies.


Subject(s)
Antibodies, Monoclonal , Neuroblastoma , Child , Humans , Antibodies, Monoclonal/therapeutic use , Neuroblastoma/drug therapy , Positron-Emission Tomography/methods
7.
Bioconjug Chem ; 35(2): 254-264, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38308817

ABSTRACT

Preclinical models of neurological diseases and gene therapy are essential for neurobiological research. However, the evaluation of such models lacks reliable reporter systems for use with noninvasive imaging methods. Here, we report the development of a reporter system based on the CLIP-tag enzyme and [18F]pFBC, an 18F-labeled covalent CLIP-tag-ligand synthesized via a DoE-optimized and fully automated process. We demonstrated its specificity using a subcutaneous xenograft model and a model of viral vector-mediated brain gene transfer by engineering HEK293 cells and striatal neurons to express membrane-tethered CLIP-tag protein. After in vitro characterization of the reporter, mice carrying either CLIP-tag expressing or control subcutaneous xenografts underwent dynamic [18F]pFBC PET imaging. The CLIP-tag expressing xenografts showed a significantly higher uptake than control xenografts (tumor-to-muscle ratio 5.0 vs 1.7, p = 0.0379). In vivo, metabolite analysis by radio-HPLC from plasma and brain homogenates showed only one radio-metabolite in plasma and none in the brain. In addition, [18F]pFBC showed fast uptake and rapid clearance from the brain in animals injected with adeno-associated virus (AAV)-CLIP in the right striatum but no right-to-left (R-L) uptake difference in the striata in the acquired PET data. In contrast, autoradiography showed a clear accumulation of radioactivity in the AAV-CLIP-injected right striatum compared to the sham-injected left striatum control. CLIP-tag expression and brain integrity were verified by immunofluorescence and light sheet microscopy. In conclusion, we established a novel reporter gene system for PET imaging of gene expression in the brain and periphery and demonstrated its potential for a wide range of applications, particularly for neurobiological research and gene therapy with viral vectors.


Subject(s)
Positron-Emission Tomography , Radiopharmaceuticals , Humans , Mice , Animals , Genes, Reporter , HEK293 Cells , Radiopharmaceuticals/metabolism , Positron-Emission Tomography/methods , Brain/diagnostic imaging , Brain/metabolism
8.
Med Phys ; 51(2): 991-1006, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38150577

ABSTRACT

BACKGROUND: Simultaneous positron emission tomography (PET)/magnetic resonance imaging (MRI) scanners and inserts are valuable tools for accurate diagnosis, treatment planning, and monitoring due to their complementary information. However, the integration of a PET system into an MRI scanner presents technical challenges for a distortion-free operation. PURPOSE: We aim to develop a PET insert dedicated to breast imaging in combination with the 3T PET/MRI scanner Biograph mMR (Siemens Healthineers) as well as a brain PET insert for the 7T MRI scanner MAGNETOM Terra (Siemens Healthineers). For this development, we selected as a basis the C13500 series PET modules (Hamamatsu Photonics K.K.) as they offer an all-in-one solution with a scalable, modular design for compact integration with state-of-the-art performance. The original PET modules were not designed to be operated with an MRI scanner, therefore we implemented several modifications such as signal transmission via plastic optical fiber, radio frequency (RF) shielding of the front-end electronics, and filter for the power supply lines. In this work, we evaluated the mutual MRI compatibility between the modified PET modules and the 3T and 7T MRI scanner. METHODS: We used a proof-of-concept setup with two detectors to comprehensively evaluate a potential distortion of the performance of the modified PET modules whilst exposing them to a variety of MR sequences up to the peak operation conditions of the Biograph mMR. A method using the periodicity of the sequences to identify distortions of the PET events in the phase of RF pulse transmission was introduced. Vice versa, the potential distortion of the Biograph mMR was evaluated by vendor proprietary MRI compatibility test sequences. Afterwards, these studies were extended to the MAGNETOM Terra. RESULTS: No distortions were introduced by gradient field switching (field strength up to 20 mT/m at a slew rate of 66.0 T/ms-1 ). However, RF pulse transmission induced a reduction of the single event rate from 33.0 kcounts/s to 32.0 kcounts/s and a degradation of the coincidence resolution time from 251 to 299 ps. Further, the proposed method revealed artifacts in the energy and timing histograms. Finally, by using the front-end filters it was possible to prevent any RF pulse induced distortion of event rate, energy, or time stamps even for a 700° flip angle (45.5 µT) sequence. The evaluations to assess potential distortions of the MRI scanner showed that carefully designed RF shielding boxes for the PET modules were required to prevent distortion of the RF spectra. The increase in B0 field inhomogeneity of 0.254 ppm and local changes of the B1 field of 12.5% introduced by the PET modules did not qualitatively affect the MR imaging with a spin echo and MPRAGE sequence for the Biograph mMR and the MAGNETOM Terra, respectively. CONCLUSION: Our study demonstrates the feasibility of using a modified version of the PET modules in combination with 3T and 7T MRI scanners. Building upon the encouraging MRI compatibility results from our proof-of-concept detectors, we will proceed to develop PET inserts for breast and brain imaging using these modules.


Subject(s)
Magnetic Resonance Imaging , Positron-Emission Tomography , Phantoms, Imaging , Magnetic Resonance Imaging/methods , Positron-Emission Tomography/methods , Brain , Radio Waves
9.
Mol Cancer ; 22(1): 207, 2023 12 15.
Article in English | MEDLINE | ID: mdl-38102680

ABSTRACT

Immune checkpoint inhibitors have revolutionized cancer therapy, yet the efficacy of these treatments is often limited by the heterogeneous and hypoxic tumor microenvironment (TME) of solid tumors. In the TME, programmed death-ligand 1 (PD-L1) expression on cancer cells is mainly regulated by Interferon-gamma (IFN-γ), which induces T cell exhaustion and enables tumor immune evasion. In this study, we demonstrate that acidosis, a common characteristic of solid tumors, significantly increases IFN-γ-induced PD-L1 expression on aggressive cancer cells, thus promoting immune escape. Using preclinical models, we found that acidosis enhances the genomic expression and phosphorylation of signal transducer and activator of transcription 1 (STAT1), and the translation of STAT1 mRNA by eukaryotic initiation factor 4F (elF4F), resulting in an increased PD-L1 expression. We observed this effect in murine and human anti-PD-L1-responsive tumor cell lines, but not in anti-PD-L1-nonresponsive tumor cell lines. In vivo studies fully validated our in vitro findings and revealed that neutralizing the acidic extracellular tumor pH by sodium bicarbonate treatment suppresses IFN-γ-induced PD-L1 expression and promotes immune cell infiltration in responsive tumors and thus reduces tumor growth. However, this effect was not observed in anti-PD-L1-nonresponsive tumors. In vivo experiments in tumor-bearing IFN-γ-/- mice validated the dependency on immune cell-derived IFN-γ for acidosis-mediated cancer cell PD-L1 induction and tumor immune escape. Thus, acidosis and IFN-γ-induced elevation of PD-L1 expression on cancer cells represent a previously unknown immune escape mechanism that may serve as a novel biomarker for anti-PD-L1/PD-1 treatment response. These findings have important implications for the development of new strategies to enhance the efficacy of immunotherapy in cancer patients.


Subject(s)
Interferon-gamma , Neoplasms , Humans , Animals , Mice , Interferon-gamma/pharmacology , Interferon-gamma/metabolism , B7-H1 Antigen , Cell Line, Tumor , Immunotherapy , Tumor Microenvironment , Neoplasms/genetics
10.
ACS Omega ; 8(34): 31450-31467, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37663501

ABSTRACT

A method to detect and quantify aggregated α-synuclein (αSYN) fibrils in vivo would drastically impact the current understanding of multiple neurodegenerative diseases, revolutionizing their diagnosis and treatment. Several efforts have produced promising scaffolds, but a notable challenge has hampered the establishment of a clinically successful αSYN positron emission tomography (PET) tracer: the requirement of high selectivity over the other misfolded proteins amyloid ß (Aß) and tau. By designing and screening a library of 2-styrylbenzothiazoles based on the selective fluorescent probe RB1, this study aimed at developing a selective αSYN PET tracer. [3H]PiB competition binding assays identified PFSB (Ki = 25.4 ± 2.3 nM) and its less lipophilic analogue MFSB, which exhibited enhanced affinity to αSYN (Ki = 10.3 ± 4.7 nM) and preserved selectivity over Aß. The two lead compounds were labeled with fluorine-18 and evaluated using in vitro autoradiography on human brain slices, where they demonstrated up to 4-fold increased specific binding in MSA cases compared to the corresponding control, reasonably reflecting selective binding to αSYN pathology. In vivo PET imaging showed [18F]MFSB successfully crosses the blood-brain barrier (BBB) and is taken up in the brain (SUV = 1.79 ± 0.02). Although its pharmacokinetic profile raises the need for additional structural optimization, [18F]MFSB represents a critical step forward in the development of a successful αSYN PET tracer by overcoming the major challenge of αSYN/Aß selectivity.

11.
Nat Biomed Eng ; 7(8): 1014-1027, 2023 08.
Article in English | MEDLINE | ID: mdl-37277483

ABSTRACT

In oncology, intratumoural heterogeneity is closely linked with the efficacy of therapy, and can be partially characterized via tumour biopsies. Here we show that intratumoural heterogeneity can be characterized spatially via phenotype-specific, multi-view learning classifiers trained with data from dynamic positron emission tomography (PET) and multiparametric magnetic resonance imaging (MRI). Classifiers trained with PET-MRI data from mice with subcutaneous colon cancer quantified phenotypic changes resulting from an apoptosis-inducing targeted therapeutic and provided biologically relevant probability maps of tumour-tissue subtypes. When applied to retrospective PET-MRI data of patients with liver metastases from colorectal cancer, the trained classifiers characterized intratumoural tissue subregions in agreement with tumour histology. The spatial characterization of intratumoural heterogeneity in mice and patients via multimodal, multiparametric imaging aided by machine-learning may facilitate applications in precision oncology.


Subject(s)
Multiparametric Magnetic Resonance Imaging , Neoplasms , Animals , Mice , Magnetic Resonance Imaging/methods , Retrospective Studies , Precision Medicine , Positron-Emission Tomography/methods , Machine Learning
12.
Radiol Imaging Cancer ; 5(4): e220138, 2023 07.
Article in English | MEDLINE | ID: mdl-37389448

ABSTRACT

Purpose To examine the association between hypoxia and programmed cell death ligand 1 (PD-L1) expression using bioluminescence imaging (BLI) and PET/MRI in a syngeneic mouse model of triple-negative breast cancer (TNBC). Materials and Methods PET/MRI and optical imaging were used to determine the role of hypoxia in altering PD-L1 expression using a syngeneic TNBC model engineered to express luciferase under hypoxia. Results Imaging showed a close spatial association between areas of hypoxia and increased PD-L1 expression in the syngeneic murine (4T1) tumor model. Mouse and human TNBC cells exposed to hypoxia exhibited a significant increase in PD-L1 expression, consistent with the in vivo imaging data. The role of hypoxia in increasing PD-L1 expression was further confirmed by using The Cancer Genome Atlas analyses of different human TNBCs. Conclusion These results have identified the potential role of hypoxia in contributing to PD-L1 heterogeneity in tumors by increasing cancer cell PD-L1 expression. Keywords: Hypoxia, PD-L1, Triple-Negative Breast Cancer, PET/MRI, Bioluminescence Imaging Supplemental material is available for this article. © RSNA, 2023.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Animals , Mice , Triple Negative Breast Neoplasms/diagnostic imaging , Triple Negative Breast Neoplasms/genetics , B7-H1 Antigen/genetics , Ligands , Magnetic Resonance Imaging , Positron-Emission Tomography , Hypoxia , Apoptosis
13.
Eur J Nucl Med Mol Imaging ; 50(10): 3084-3096, 2023 08.
Article in English | MEDLINE | ID: mdl-37148296

ABSTRACT

PURPOSE: Tumor hypoxia and other microenvironmental factors are key determinants of treatment resistance. Hypoxia positron emission tomography (PET) and functional magnetic resonance imaging (MRI) are established prognostic imaging modalities to identify radiation resistance in head-and-neck cancer (HNC). The aim of this preclinical study was to develop a multi-parametric imaging parameter specifically for focal radiotherapy (RT) dose escalation using HNC xenografts of different radiation sensitivities. METHODS: A total of eight human HNC xenograft models were implanted into 68 immunodeficient mice. Combined PET/MRI using dynamic [18F]-fluoromisonidazole (FMISO) hypoxia PET, diffusion-weighted (DW), and dynamic contrast-enhanced MRI was carried out before and after fractionated RT (10 × 2 Gy). Imaging data were analyzed on voxel-basis using principal component (PC) analysis for dynamic data and apparent diffusion coefficients (ADCs) for DW-MRI. A data- and hypothesis-driven machine learning model was trained to identify clusters of high-risk subvolumes (HRSs) from multi-dimensional (1-5D) pre-clinical imaging data before and after RT. The stratification potential of each 1D to 5D model with respect to radiation sensitivity was evaluated using Cohen's d-score and compared to classical features such as mean/peak/maximum standardized uptake values (SUVmean/peak/max) and tumor-to-muscle-ratios (TMRpeak/max) as well as minimum/valley/maximum/mean ADC. RESULTS: Complete 5D imaging data were available for 42 animals. The final preclinical model for HRS identification at baseline yielding the highest stratification potential was defined in 3D imaging space based on ADC and two FMISO PCs ([Formula: see text]). In 1D imaging space, only clusters of ADC revealed significant stratification potential ([Formula: see text]). Among all classical features, only ADCvalley showed significant correlation to radiation resistance ([Formula: see text]). After 2 weeks of RT, FMISO_c1 showed significant correlation to radiation resistance ([Formula: see text]). CONCLUSION: A quantitative imaging metric was described in a preclinical study indicating that radiation-resistant subvolumes in HNC may be detected by clusters of ADC and FMISO using combined PET/MRI which are potential targets for future functional image-guided RT dose-painting approaches and require clinical validation.


Subject(s)
Diffusion Magnetic Resonance Imaging , Head and Neck Neoplasms , Humans , Animals , Mice , Positron-Emission Tomography/methods , Misonidazole , Magnetic Resonance Imaging , Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/radiotherapy , Hypoxia , Radiopharmaceuticals
14.
Nat Rev Cancer ; 23(7): 474-490, 2023 07.
Article in English | MEDLINE | ID: mdl-37258875

ABSTRACT

Molecular imaging has experienced enormous advancements in the areas of imaging technology, imaging probe and contrast development, and data quality, as well as machine learning-based data analysis. Positron emission tomography (PET) and its combination with computed tomography (CT) or magnetic resonance imaging (MRI) as a multimodality PET-CT or PET-MRI system offer a wealth of molecular, functional and morphological data with a single patient scan. Despite the recent technical advances and the availability of dozens of disease-specific contrast and imaging probes, only a few parameters, such as tumour size or the mean tracer uptake, are used for the evaluation of images in clinical practice. Multiparametric in vivo imaging data not only are highly quantitative but also can provide invaluable information about pathophysiology, receptor expression, metabolism, or morphological and functional features of tumours, such as pH, oxygenation or tissue density, as well as pharmacodynamic properties of drugs, to measure drug response with a contrast agent. It can further quantitatively map and spatially resolve the intertumoural and intratumoural heterogeneity, providing insights into tumour vulnerabilities for target-specific therapeutic interventions. Failure to exploit and integrate the full potential of such powerful imaging data may lead to a lost opportunity in which patients do not receive the best possible care. With the desire to implement personalized medicine in the cancer clinic, the full comprehensive diagnostic power of multiplexed imaging should be utilized.


Subject(s)
Neoplasms , Positron Emission Tomography Computed Tomography , Humans , Positron Emission Tomography Computed Tomography/methods , Positron-Emission Tomography , Neoplasms/diagnostic imaging , Magnetic Resonance Imaging , Machine Learning
15.
Molecules ; 28(10)2023 May 10.
Article in English | MEDLINE | ID: mdl-37241742

ABSTRACT

A technique to image α-synuclein (αSYN) fibrils in vivo is an unmet scientific and clinical need that would represent a transformative tool in the understanding, diagnosis, and treatment of various neurodegenerative diseases. Several classes of compounds have shown promising results as potential PET tracers, but no candidate has yet exhibited the affinity and selectivity required to reach clinical application. We hypothesized that the application of the rational drug design technique of molecular hybridization to two promising lead scaffolds could enhance the binding to αSYN up to the fulfillment of those requirements. By combining the structures of SIL and MODAG tracers, we developed a library of diarylpyrazoles (DAPs). In vitro evaluation through competition assays against [3H]SIL26 and [3H]MODAG-001 showed the novel hybrid scaffold to have preferential binding affinity for amyloid ß (Aß) over αSYN fibrils. A ring-opening modification on the phenothiazine building block to produce analogs with increased three-dimensional flexibility did not result in an improved αSYN binding but a complete loss of competition, as well as a significant reduction in Aß affinity. The combination of the phenothiazine and the 3,5-diphenylpyrazole scaffolds into DAP hybrids did not generate an enhanced αSYN PET tracer lead compound. Instead, these efforts identified a scaffold for promising Aß ligands that may be relevant to the treatment and monitoring of Alzheimer's disease (AD).


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Humans , Amyloid beta-Peptides/metabolism , alpha-Synuclein/metabolism , Alzheimer Disease/metabolism , Amyloid
16.
Theranostics ; 13(8): 2408-2423, 2023.
Article in English | MEDLINE | ID: mdl-37215571

ABSTRACT

Aim/Introduction: Despite the spectacular success of immune checkpoint inhibitor therapy (ICT) in patients with metastatic cancer, only a limited proportion of patients benefit from ICT. CD8+ cytotoxic T cells are important gatekeepers for the therapeutic response to ICT and are able to recognize MHC class I-dependent tumor antigens and destroy tumor cells. The radiolabeled minibody [89Zr]Zr-Df-IAB22M2C has a high affinity for human CD8+ T cells and was successfully tested in a phase I study. Here, we aimed to gain the first clinical PET/MRI experience with the noninvasive assessment of the CD8+ T-cell distribution in cancer patients by in vivo [89Zr]Zr-Df-IAB22M2C with a distinct focus of identifying potential signatures of successful ICT. Material and Methods: We investigated 8 patients with metastasized cancers undergoing ICT. Radiolabeling of Df-IAB22M2C with Zr-89 was performed according to Good Manufacturing Practice. Multiparametric PET/MRI was acquired 24 h after injection of 74.2±17.9 MBq [89Zr]Zr-Df-IAB22M2C. We analyzed [89Zr]Zr-Df-IAB22M2C uptake within the metastases and within primary and secondary lymphatic organs. Results: [89Zr]Zr-Df-IAB22M2C injection was tolerated well without noticeable side effects. The CD8 PET/MRI data acquisitions 24 hours post-administration of [89Zr]Zr-Df-IAB22M2C revealed good image quality with a relatively low background signal due to only low unspecific tissue uptake and marginal blood pool retention. Only two metastatic lesions showed markedly increased tracer uptake in our cohort of patients. Furthermore, we observed high interpatient variability in [89Zr]Zr-Df-IAB22M2C uptake within the primary and secondary lymphoid organs. Four out of five ICT patients exhibited rather high [89Zr]Zr-Df-IAB22M2C uptake in the bone marrow. Two of these four patients as well as two other patients yielded pronounced [89Zr]Zr-Df-IAB22M2C uptake within nonmetastatic lymph nodes. Interestingly, cancer progression in ICT patients was associated with a relatively low [89Zr]Zr-Df-IAB22M2C uptake in the spleen compared to the liver in 4 out of the 6 patients. Lymph nodes with enhanced [89Zr]Zr-Df-IAB22M2C uptake revealed significantly reduced apparent diffusion coefficient (ADC) values in diffusion weighted MRI. Conclusion: Our first clinical experiences revealed the feasibility of [89Zr]Zr-Df-IAB22M2C PET/MRI in assessing potential immune-related changes in metastases and primary and secondary lymphatic organs. According to our results, we hypothesize that alterations in [89Zr]Zr-Df-IAB22M2C uptake in primary and secondary lymphoid organs might be associated with the response to ICT.


Subject(s)
Neoplasms , Radioisotopes , Humans , CD8-Positive T-Lymphocytes , Cell Line, Tumor , Magnetic Resonance Imaging , Neoplasms/pathology , Positron-Emission Tomography/methods , Zirconium
17.
Brain Commun ; 5(2): fcad099, 2023.
Article in English | MEDLINE | ID: mdl-37065090

ABSTRACT

Ambroxol is a well-known mucolytic expectorant, which has gained much attention in amyotrophic lateral sclerosis, Parkinson's and Gaucher's disease. A specific focus has been placed on ambroxol's glucocerebrosidase-stimulating activity, on grounds that the point mutation of the gba1 gene, which codes for this enzyme, is a risk factor for developing Parkinson's disease. However, ambroxol has been attributed other characteristics, such as the potent inhibition of sodium channels, modification of calcium homeostasis, anti-inflammatory effects and modifications of oxygen radical scavengers. We hypothesized that ambroxol could have a direct impact on neuronal rescue if administered directly after ischaemic stroke induction. We longitudinally evaluated 53 rats using magnetic resonance imaging to examine stroke volume, oedema, white matter integrity, resting state functional MRI and behaviour for 1 month after ischemic stroke onset. For closer mechanistic insights, we evaluated tissue metabolomics of different brain regions in a subgroup of animals using ex vivo nuclear magnetic resonance spectroscopy. Ambroxol-treated animals presented reduced stroke volumes, reduced cytotoxic oedema, reduced white matter degeneration, reduced necrosis, improved behavioural outcomes and complex changes in functional brain connectivity. Nuclear magnetic resonance spectroscopy tissue metabolomic data at 24 h post-stroke proposes several metabolites that are capable of minimizing post-ischaemic damage and that presented prominent shifts during ambroxol treatment in comparison to controls. Taking everything together, we propose that ambroxol catalyzes recovery in energy metabolism, cellular homeostasis, membrane repair mechanisms and redox balance. One week of ambroxol administration following stroke onset reduced ischaemic stroke severity and improved functional outcome in the subacute phase followed by reduced necrosis in the chronic stroke phase.

18.
Circ Res ; 132(7): e96-e113, 2023 03 31.
Article in English | MEDLINE | ID: mdl-36891903

ABSTRACT

BACKGROUND: Platelets can infiltrate ischemic myocardium and are increasingly recognized as critical regulators of inflammatory processes during myocardial ischemia and reperfusion (I/R). Platelets contain a broad repertoire of microRNAs (miRNAs), which, under certain conditions such as myocardial ischemia, may be transferred to surrounding cells or released into the microenvironment. Recent studies could demonstrate that platelets contribute substantially to the circulating miRNA pool holding the potential for so far undiscovered regulatory functions. The present study aimed to determine the role of platelet-derived miRNAs in myocardial injury and repair following myocardial I/R. METHODS: In vivo model of myocardial I/R, multimodal in vivo and ex vivo imaging approaches (light-sheet fluorescence microscopy, positron emission tomography and magnetic resonance imaging, speckle-tracking echocardiography) of myocardial inflammation and remodeling, and next-generation deep sequencing analysis of platelet miRNA expression. RESULTS: In mice with a megakaryocyte/platelet-specific knockout of pre-miRNA processing ribonuclease Dicer, the present study discloses a key role of platelet-derived miRNAs in the tightly regulated cellular processes orchestrating left ventricular remodeling after myocardial I/R following transient left coronary artery ligation. Disruption of the miRNA processing machinery in platelets by deletion of Dicer resulted in increased myocardial inflammation, impaired angiogenesis, and accelerated development of cardiac fibrosis, culminating in an increased infarct size by d7 that persisted through d28 of myocardial I/R. Worsened cardiac remodeling after myocardial infarction in mice with a platelet-specific Dicer deletion resulted in an increased fibrotic scar formation and distinguishably increased perfusion defect of the apical and anterolateral wall at day 28 post-myocardial infarction. Altogether, these observations culminated in an impaired left ventricular function and hampered long-term cardiac recovery after experimental myocardial infarction and reperfusion therapy. Treatment with the P2Y12 (P2Y purinoceptor 12) antagonist ticagrelor completely reversed increased myocardial damage and adverse cardiac remodeling observed in DicerPf4∆/Pf4∆ mice. CONCLUSIONS: The present study discloses a critical role of platelet-derived miRNA in myocardial inflammation and structural remodeling processes following myocardial I/R.


Subject(s)
Coronary Artery Disease , MicroRNAs , Myocardial Infarction , Myocardial Ischemia , Myocardial Reperfusion Injury , Mice , Animals , Blood Platelets/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Ventricular Remodeling , Myocardial Reperfusion Injury/metabolism , Myocardial Ischemia/metabolism , Myocardial Infarction/pathology , Coronary Artery Disease/metabolism , Inflammation/metabolism , Disease Models, Animal
20.
Plast Reconstr Surg ; 152(1): 96e-109e, 2023 07 01.
Article in English | MEDLINE | ID: mdl-36728589

ABSTRACT

BACKGROUND: Over 137,000 breast reconstructions are performed annually by American Society of Plastic Surgeons (ASPS) members. Vascularized flaps and avascular lipofilling each account for over 33,000 autologous reconstructions. Although clinical and experimental observations suggest biologic differences with diverging effects on locoregional tumor control, comparative animal models are lacking. The authors standardized existing techniques in immunocompetent mice, laying the foundation for in vivo models of autologous breast reconstruction combinable with orthotopic tumor implantations. METHODS: Twenty-five groin flaps and 39 fat grafts were transferred in female BALB/c-mice. Adipocytes were tracked via Hoechst-Calcein-DiI staining ( n = 2 per group), and postoperative volume retentions were compared via magnetic resonance imaging ( n = 3 per group) on days 1, 11, 21, and 31. Proliferation indices, microvessel densities, tissue hypoxia, and macrophage infiltrates were compared via Ki67, CD31, pimonidazole, and hematoxylin-eosin staining on days 5, 10, 15, 20, and 30 ( n = 4 per group). RESULTS: Viable adipocytes were present in both groups. Graft volumes plateaued at 42.7 ± 1.2% versus 81.8 ± 4.0% of flaps ( P < 0.001). Initially, grafts contained more hypoxic cells (day 5: 15.192 ± 1.249 versus 1.157 ± 192; P < 0.001), followed by higher proliferation (day 15: 25.2 ± 1.0% versus 0.0 ± 0.0%; P < 0.001), higher microvessel numbers (day 30: 307.0 ± 13.2 versus 178.0 ± 10.6; P < 0.001), and more pronounced macrophage infiltrates (graded 3 versus 2; P < 0.01). CONCLUSION: This comparative murine pilot study of vascularized flaps versus avascular lipofilling suggests differences in volume retention, proliferation, angiogenesis, hypoxia, and inflammation. CLINICAL RELEVANCE STATEMENT: The biological differences of fat grafting versus flap transfer are not fully understood because no single comparative experimental model has been established to date. The authors present the first comparative small animal model of both techniques, which will allow the gaining of deeper insights into their biological effects.


Subject(s)
Adipose Tissue , Mammaplasty , Female , Animals , Mice , Adipose Tissue/transplantation , Pilot Projects , Adipocytes/transplantation , Mammaplasty/methods , Cell Proliferation
SELECTION OF CITATIONS
SEARCH DETAIL
...