Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(15)2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35955608

ABSTRACT

BACKGROUND: Neurogenic detrusor overactivity (NDO) is a severe pathological condition characterized by involuntary detrusor contractions leading to urine leakage. This condition is frequent after spinal cord injury (SCI). Gene therapy for NDO requires the development of vectors that express therapeutic transgenes driven by sensory neuron-specific promoters. The aim of this study was to develop and assess tools for the characterization of sensory neuron-specific promoters in dorsal root ganglia (DRG) neurons after transduction with herpes simplex virus type 1 (HSV-1)-based amplicon defective vectors. METHODS: The HSV-1 vector genome encoded two independent transcription cassettes: one expressed firefly luciferase (FLuc) driven by different promoters' candidates (rTRPV1, rASIC3, rCGRP, or hCGRP), and the other expressed a reporter gene driven by an invariable promoter. The strength and selectivity of promoters was assessed in organotypic cultures of explanted adult DRG, or sympathetic and parasympathetic ganglia from control and SCI rats. RESULTS: The rCGRP promoter induced selective expression in the DRG of normal rats. The rTRPV-1 promoter, which did not display selective activity in control rats, induced selective expression in DRG explanted from SCI rats. CONCLUSIONS: This study provides a methodology to assess sensory neuron-specific promoters, opening new perspectives for future gene therapy for NDO.


Subject(s)
Herpes Simplex , Herpesvirus 1, Human , Spinal Cord Injuries , Urinary Bladder, Overactive , Animals , Ganglia, Spinal/metabolism , Genetic Therapy/methods , Genetic Vectors/genetics , Herpesvirus 1, Human/genetics , Rats , Sensory Receptor Cells/metabolism , Spinal Cord Injuries/metabolism , Urinary Bladder, Overactive/therapy
2.
Toxins (Basel) ; 11(2)2019 02 19.
Article in English | MEDLINE | ID: mdl-30791373

ABSTRACT

A set of herpes simplex virus type 1 (HSV-1) amplicon vectors expressing the light chains (LC) of botulinum neurotoxins (BoNT) A, B, C, D, E and F was constructed. Their properties have been assessed in primary cultures of rat embryonic dorsal root ganglia (DRG) neurons, and in organotypic cultures of explanted DRG from adult rats. Following infection of primary cultures of rat embryonic DRG neurons, the different BoNT LC induced efficient cleavage of their corresponding target Soluble N-ethylmaleimide-sensitive-factor Attachment protein Receptor (SNARE) protein (VAMP, SNAP25, syntaxin). A similar effect was observed following infection by BoNT-A LC of organotypic cultures of adult rat DRG. To quantify and compare the functional activities of the different BoNT LC, the inhibition of calcitonin gene-related protein (CGRP) secretion was assessed in DRG neurons following infection by the different vectors. All BoNT-LC were able to inhibit CGRP secretion although to different levels. Vectors expressing BoNT-F LC displayed the highest inhibitory activity, while those expressing BoNT-D and -E LC induced a significantly lower CGRP release inhibition. Cleavage of SNARE proteins and inhibition of CGRP release could be detected in neuron cultures infected at less than one transducing unit (TU) per neuron, showing the extreme efficacy of these vectors. To our knowledge this is the first study investigating the impact of vector-expressed transgenic BoNT LC in sensory neurons.


Subject(s)
Botulinum Toxins/genetics , Calcitonin Gene-Related Peptide/metabolism , Ganglia, Spinal/metabolism , Herpesvirus 1, Human/genetics , Neurotoxins/genetics , SNARE Proteins/metabolism , Sensory Receptor Cells/metabolism , Animals , Cells, Cultured , Female , Ganglia, Spinal/virology , Genetic Vectors , Rats, Sprague-Dawley , Sensory Receptor Cells/virology
3.
Oncotarget ; 8(25): 40079-40089, 2017 Jun 20.
Article in English | MEDLINE | ID: mdl-28445143

ABSTRACT

The immunoglobulin heavy chain (IGH) gene loci are subject to specific recombination events during B-cell differentiation including somatic hypermutation and class switch recombination which mark the end of immunoglobulin gene maturation in germinal centers of secondary lymph nodes. These two events rely on the activity of activation-induced cytidine deaminase (AID) which requires DNA double strand breaks be created, a potential danger to the cell. Applying 3D-fluorescence in situ hybridization coupled with immunofluorescence staining to a previously described experimental system recapitulating normal B-cell differentiation ex vivo, we have kinetically analyzed the radial positioning of the two IGH gene loci as well as their proximity with the nucleolus, heterochromatin and γH2AX foci. Our observations are consistent with the proposal that these IGH gene rearrangements take place in a specific perinucleolar "recombination compartment" where AID could be sequestered thus limiting the extent of its potentially deleterious off-target effects.


Subject(s)
B-Lymphocytes/immunology , Cell Differentiation/immunology , Cell Nucleolus/immunology , Immunoglobulin Heavy Chains/immunology , B-Lymphocytes/metabolism , Cell Line, Tumor , Cell Nucleolus/metabolism , Cells, Cultured , Cytidine Deaminase/immunology , Cytidine Deaminase/metabolism , Germinal Center/cytology , Germinal Center/immunology , Germinal Center/metabolism , Humans , Immunoglobulin Class Switching/genetics , Immunoglobulin Class Switching/immunology , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/metabolism , In Situ Hybridization, Fluorescence/methods , Lymphocyte Activation/immunology , Microscopy, Confocal , Somatic Hypermutation, Immunoglobulin/genetics , Somatic Hypermutation, Immunoglobulin/immunology
4.
J Cell Biochem ; 117(7): 1506-10, 2016 07.
Article in English | MEDLINE | ID: mdl-26873538

ABSTRACT

The immunoglobulin heavy chain (IGH) locus is submitted to intra-chromosomal DNA breakages and rearrangements during normal B cell differentiation that create a risk for illegitimate inter-chromosomal translocations leading to a variety of B-cell malignancies. In most Burkitt's and Mantle Cell lymphomas, specific chromosomal translocations juxtapose the IGH locus with a CMYC or Cyclin D1 (CCND1) gene, respectively. 3D-fluorescence in situ hybridization was performed on normal peripheral B lymphocytes induced to mature in vitro from a naive state to the stage where they undergo somatic hypermutation (SHM) and class switch recombination (CSR). The CCND1 genes were found very close to the IGH locus in naive B cells and further away after maturation. In contrast, the CMYC alleles became localized closer to an IGH locus at the stage of SHM/CSR. The colocalization observed between the two oncogenes and the IGH locus at successive stages of B-cell differentiation occurred in the immediate vicinity of the nucleolus, consistent with the known localization of the RAGs and AID enzymes whose function has been demonstrated in IGH physiological rearrangements. We propose that the chromosomal events leading to Mantle Cell lymphoma and Burkitt's lymphoma are favored by the colocalization of CCND1 and CMYC with IGH at the time the concerned B cells undergo VDJ recombination or SHM/CSR, respectively. J. Cell. Biochem. 117: 1506-1510, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
B-Lymphocytes/metabolism , Cell Differentiation/physiology , Cyclin D1/metabolism , Gene Rearrangement, B-Lymphocyte, Heavy Chain/physiology , Immunoglobulin Heavy Chains/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Alleles , B-Lymphocytes/cytology , Cyclin D1/genetics , Genetic Loci/physiology , Humans , Immunoglobulin Heavy Chains/genetics , In Situ Hybridization, Fluorescence , Proto-Oncogene Proteins c-myc/genetics
5.
PLoS One ; 7(10): e47157, 2012.
Article in English | MEDLINE | ID: mdl-23118866

ABSTRACT

BACKGROUND: It becomes increasingly evident that nuclesomes are far from being identical to each other. This nucleosome diversity is due partially to the existence of histone variants encoded by separate genes. Among the known histone variants the less characterized are H2A.Bbd and different forms of macroH2A. This is especially true in the case of H2A.Bbd as there are still no commercially available antibodies specific to H2A.Bbd that can be used for chromatin immunoprecipitation (ChIP). METHODS: We have generated HeLa S3 cell lines stably expressing epitope-tagged versions of macroH2A1.1, H2A.Bbd or canonical H2A and analyzed genomic distribution of the tagged histones using ChIP-on-chip technique. RESULTS: The presence of histone H2A variants macroH2A1.1 and H2A.Bbd has been analyzed in the chromatin of several segments of human chromosomes 11, 16 and X that have been chosen for their different gene densities and chromatin status. Chromatin immunoprecipitation (ChIP) followed by hybridization with custom NimbleGene genomic microarrays demonstrated that in open chromatin domains containing tissue-specific along with housekeeping genes, the H2A.Bbd variant was preferentially associated with the body of a subset of transcribed genes. The macroH2A1.1 variant was virtually absent from some genes and underrepresented in others. In contrast, in closed chromatin domains which contain only tissue-specific genes inactive in HeLa S3 cells, both macroH2A1.1 and H2A.Bbd histone variants were present and often colocalized. CONCLUSIONS: Genomic distribution of macro H2A and H2A.Bbd does not follow any simple rule and is drastically different in open and closed genomic domains.


Subject(s)
Chromatin , Histones , Chromatin/genetics , Chromatin/metabolism , Chromatin Immunoprecipitation , Chromosomes, Human, Pair 11/genetics , Chromosomes, Human, Pair 16/genetics , Chromosomes, Human, X/genetics , Gene Expression , HeLa Cells , Histones/genetics , Histones/metabolism , Humans , Nucleosomes
6.
PLoS One ; 6(11): e26844, 2011.
Article in English | MEDLINE | ID: mdl-22132080

ABSTRACT

BACKGROUND: Cells that reach "Hayflick limit" of proliferation, known as senescent cells, possess a particular type of nuclear architecture. Human senescent cells are characterized by the presence of highly condensed senescent associated heterochromatin foci (SAHF) that can be detected both by immunostaining for histone H3 three-methylated at lysine 9 (H3K9me3) and by DAPI counterstaining. METHODS: We have studied nuclear architecture in bovine senescent cells using a combination of immunofluorescence and 3D fluorescent in-situ hybridization (FISH). RESULTS: Analysis of heterochromatin distribution in bovine senescent cells using fluorescent in situ hybridization for pericentric chromosomal regions, immunostaining of H3K9me3, centromeric proteins CENP A/B and DNA methylation showed a lower level of heterochromatin condensation as compared to young cells. No SAHF foci were observed. Instead, we observed fibrous ring-like or ribbon-like heterochromatin patterns that were undetectable with DAPI counterstaining. These heterochromatin fibers were associated with nucleoli. CONCLUSIONS: Constitutive heterochromatin in bovine senescent cells is organized in ring-like structures.


Subject(s)
Cellular Senescence , Fibroblasts/cytology , Fibroblasts/metabolism , Heterochromatin/metabolism , Animals , Cattle , Cell Line , Cellular Senescence/drug effects , Centromere/metabolism , Fibroblasts/drug effects , Hydroxamic Acids/pharmacology
7.
Reproduction ; 139(1): 129-37, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19778997

ABSTRACT

Efficient reprograming of the donor cell genome in nuclear transfer (NT) embryos is linked to the ability of the embryos to sustain full-term development. As the nuclear architecture has recently emerged as a key factor in the regulation of gene expression, we questioned whether early bovine embryos obtained from transfer of cultured fibroblasts into enucleated oocytes would adopt an embryo-like nuclear organization. We studied the dynamics of constitutive heterochromatin in the stages prior to embryonic genome activation by distribution analysis of heterochromatin protein CBX1 (HP1), centromeric proteins CENPA and CENPB, and histone H3 three-methylated at lysine 9. Then we applied descriptive, quantitative, and co-localization analyses. A dramatic reorganization of heterochromatic blocks of somatic donor cells was first observed in the late one-cell stage NT embryos. Then at two- and four-cell stages, we found two types of NT embryos: one displaying noncondensed heterochromatin patches similar to IVF embryos, whereas the second type displayed condensed heterochromatin blocks, normally observed in IVF embryos only after the eight-cell stage. These analyses discriminate for the first time two contrasted types of nuclear organization in NT embryos, which may correspond to different functional states of the nuclei. The relationship with the somatic nucleus reprograming efficiency is discussed.


Subject(s)
Chromatin Assembly and Disassembly , Embryo, Mammalian/metabolism , Embryonic Development , Heterochromatin/metabolism , Animals , Autoantigens/metabolism , Cattle , Cell Nucleus/metabolism , Cell Nucleus/ultrastructure , Cells, Cultured , Cellular Reprogramming , Centromere Protein A , Centromere Protein B/metabolism , Chromobox Protein Homolog 5 , Chromosomal Proteins, Non-Histone/metabolism , Cloning, Organism/methods , Cytoplasmic Granules/metabolism , Cytoplasmic Granules/ultrastructure , Embryo, Mammalian/ultrastructure , Fertilization in Vitro , Fibroblasts , Heterochromatin/classification , Heterochromatin/ultrastructure , Histones/metabolism , Kinetics , Microscopy, Confocal , Nuclear Transfer Techniques , Oocytes
SELECTION OF CITATIONS
SEARCH DETAIL
...