Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Neural Syst ; 33(10): 2350052, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37567858

ABSTRACT

Over the years, the humanities community has increasingly requested the creation of artificial intelligence frameworks to help the study of cultural heritage. Document Layout segmentation, which aims at identifying the different structural components of a document page, is a particularly interesting task connected to this trend, specifically when it comes to handwritten texts. While there are many effective approaches to this problem, they all rely on large amounts of data for the training of the underlying models, which is rarely possible in a real-world scenario, as the process of producing the ground truth segmentation task with the required precision to the pixel level is a very time-consuming task and often requires a certain degree of domain knowledge regarding the documents at hand. For this reason, in this paper, we propose an effective few-shot learning framework for document layout segmentation relying on two novel components, namely a dynamic instance generation and a segmentation refinement module. This approach is able of achieving performances comparable to the current state of the art on the popular Diva-HisDB dataset, while relying on just a fraction of the available data.


Subject(s)
Artificial Intelligence , Image Processing, Computer-Assisted
2.
Int J Mol Sci ; 23(16)2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36012423

ABSTRACT

The persistence of long-term coronavirus-induced disease 2019 (COVID-19) sequelae demands better insights into its natural history. Therefore, it is crucial to discover the biomarkers of disease outcome to improve clinical practice. In this study, 160 COVID-19 patients were enrolled, of whom 80 had a "non-severe" and 80 had a "severe" outcome. Sera were analyzed by proximity extension assay (PEA) to assess 274 unique proteins associated with inflammation, cardiometabolic, and neurologic diseases. The main clinical and hematochemical data associated with disease outcome were grouped with serological data to form a dataset for the supervised machine learning techniques. We identified nine proteins (i.e., CD200R1, MCP1, MCP3, IL6, LTBP2, MATN3, TRANCE, α2-MRAP, and KIT) that contributed to the correct classification of COVID-19 disease severity when combined with relative neutrophil and lymphocyte counts. By analyzing PEA, clinical and hematochemical data with statistical methods that were able to handle many variables in the presence of a relatively small sample size, we identified nine potential serum biomarkers of a "severe" outcome. Most of these were confirmed by literature data. Importantly, we found three biomarkers associated with central nervous system pathologies and protective factors, which were downregulated in the most severe cases.


Subject(s)
COVID-19 , Proteomics , Biomarkers/blood , COVID-19/diagnosis , Humans , Lymphocyte Count , Machine Learning
3.
Int J Neural Syst ; 32(7): 2250030, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35730477

ABSTRACT

Image anomaly detection consists in detecting images or image portions that are visually different from the majority of the samples in a dataset. The task is of practical importance for various real-life applications like biomedical image analysis, visual inspection in industrial production, banking, traffic management, etc. Most of the current deep learning approaches rely on image reconstruction: the input image is projected in some latent space and then reconstructed, assuming that the network (mostly trained on normal data) will not be able to reconstruct the anomalous portions. However, this assumption does not always hold. We thus propose a new model based on the Vision Transformer architecture with patch masking: the input image is split in several patches, and each patch is reconstructed only from the surrounding data, thus ignoring the potentially anomalous information contained in the patch itself. We then show that multi-resolution patches and their collective embeddings provide a large improvement in the model's performance compared to the exclusive use of the traditional square patches. The proposed model has been tested on popular anomaly detection datasets such as MVTec and head CT and achieved good results when compared to other state-of-the-art approaches.


Subject(s)
Image Processing, Computer-Assisted , Tomography, X-Ray Computed , Image Processing, Computer-Assisted/methods , Tomography, X-Ray Computed/methods
4.
Sensors (Basel) ; 20(18)2020 Sep 18.
Article in English | MEDLINE | ID: mdl-32962168

ABSTRACT

Person re-identification is concerned with matching people across disjointed camera views at different places and different time instants. This task results of great interest in computer vision, especially in video surveillance applications where the re-identification and tracking of persons are required on uncontrolled crowded spaces and after long time periods. The latter aspects are responsible for most of the current unsolved problems of person re-identification, in fact, the presence of many people in a location as well as the passing of hours or days give arise to important visual appearance changes of people, for example, clothes, lighting, and occlusions; thus making person re-identification a very hard task. In this paper, for the first time in the state-of-the-art, a meta-feature based Long Short-Term Memory (LSTM) hashing model for person re-identification is presented. Starting from 2D skeletons extracted from RGB video streams, the proposed method computes a set of novel meta-features based on movement, gait, and bone proportions. These features are analysed by a network composed of a single LSTM layer and two dense layers. The first layer is used to create a pattern of the person's identity, then, the seconds are used to generate a bodyprint hash through binary coding. The effectiveness of the proposed method is tested on three challenging datasets, that is, iLIDS-VID, PRID 2011, and MARS. In particular, the reported results show that the proposed method, which is not based on visual appearance of people, is fully competitive with respect to other methods based on visual features. In addition, thanks to its skeleton model abstraction, the method results to be a concrete contribute to address open problems, such as long-term re-identification and severe illumination changes, which tend to heavily influence the visual appearance of persons.


Subject(s)
Algorithms , Memory, Long-Term , Gait , Humans
5.
Int J Neural Syst ; 30(10): 2050060, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32938260

ABSTRACT

Image anomaly detection is an application-driven problem where the aim is to identify novel samples, which differ significantly from the normal ones. We here propose Pyramidal Image Anomaly DEtector (PIADE), a deep reconstruction-based pyramidal approach, in which image features are extracted at different scale levels to better catch the peculiarities that could help to discriminate between normal and anomalous data. The features are dynamically routed to a reconstruction layer and anomalies can be identified by comparing the input image with its reconstruction. Unlike similar approaches, the comparison is done by using structural similarity and perceptual loss rather than trivial pixel-by-pixel comparison. The proposed method performed at par or better than the state-of-the-art methods when tested on publicly available datasets such as CIFAR10, COIL-100 and MVTec.


Subject(s)
Deep Learning , Image Interpretation, Computer-Assisted , Image Processing, Computer-Assisted , Supervised Machine Learning , Humans
6.
Sensors (Basel) ; 9(4): 2252-70, 2009.
Article in English | MEDLINE | ID: mdl-22574011

ABSTRACT

The paper is a survey of the main technological aspects of advanced visual-based surveillance systems. A brief historical view of such systems from the origins to nowadays is given together with a short description of the main research projects in Italy on surveillance applications in the last twenty years. The paper then describes the main characteristics of an advanced visual sensor network that (a) directly processes locally acquired digital data, (b) automatically modifies intrinsic (focus, iris) and extrinsic (pan, tilt, zoom) parameters to increase the quality of acquired data and (c) automatically selects the best subset of sensors in order to monitor a given moving object in the observed environment.

SELECTION OF CITATIONS
SEARCH DETAIL