Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 128
Filter
1.
Fluids Barriers CNS ; 21(1): 41, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755589

ABSTRACT

INTRODUCTION: Hyperbaric oxygen has been used as a medical treatment tool in hyperbaric chambers and is an integral part of professional and combat divers' activity. In extreme cases, exposure to hyperbaric oxygen can develop central nervous system oxygen toxicity (CNS-OT), which leads to seizures and eventually death. CNS-OT is caused by neuronal hyperactivity due to high oxygen levels, potentially damaging brain cells including the blood-brain barrier (BBB). However, the effect of hyperbaric oxygen levels on the healthy BBB has not been characterized directly yet. METHODS: Six or three different groups of ~ eight rats or mice, respectively, were exposed to increasing levels of partial pressure of oxygen (0.21 to 5 ATA) in a hyperbaric chamber, followed by MRI scanning with gadolinium. Statistical significance (adjusted p-value ≤ 0.05) was assessed using linear regression and ordinary one-way (rats) or two-way (mice) ANOVA with correction of multiple comparison tests. In rats, the effect of 100% oxygen at 5 ATA was independently validated using FITC-Dextran (5 kDa). Statistical significance (p-value ≤ 0.05) was assessed using Welch's t-test and effect size was calculated by Cohen's D. RESULTS: In rats, analyzed MRI scans showed a significant trend of increase in the % gadolinium in brain tissues as a result of hyperbaric oxygen pressures (p-value = 0.0079). The most significant increase was measured at 4 ATA compared to air (adjusted p-value = 0.0461). Significant increased FITC-Dextran levels were measured in the rats' brains under 100% oxygen at 5 ATA versus air (p-value = 0.0327; Effect size = 2.0). In mice, a significant increase in gadolinium penetration into the hippocampus and frontal cortex was measured over time (adjusted p-value < 0.05) under 100% oxygen at 3 and 5 ATA versus air, and between the treatments (adjusted p-value < 0.0001). CONCLUSIONS: The BBB is increasingly disrupted due to higher levels of hyperbaric oxygen in rodents, indicating a direct relation between hyperbaric oxygen and BBB dysregulation for the first time. We suggest considering this risk in different diving activities, and protocols using a hyperbaric chamber. On the other hand, this study highlights the potential therapeutic usage of hyperbaric oxygen for controlled drug delivery through the BBB into brain tissues in different brain-related diseases.


Subject(s)
Blood-Brain Barrier , Hyperbaric Oxygenation , Magnetic Resonance Imaging , Animals , Hyperbaric Oxygenation/methods , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/diagnostic imaging , Rats , Male , Mice , Oxygen/metabolism , Rats, Sprague-Dawley , Mice, Inbred C57BL
2.
J Neurotrauma ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38517091

ABSTRACT

This study utilized the Noldus PhenoTyper Home Cage Monitoring system (HCM) to assess the behavioral and cognitive changes of experimental closed-head mild traumatic brain injury (mTBI). Seventy-nine adult male Institute of Cancer Research (ICR) mice were subjected to either a sham procedure or closed-head mTBI using the weight-drop model. Seven days post-injury, separate cohorts of mice underwent either a non-cognitive or a cognitive home cage assessment, a treadmill fatigue test, or the Open Field Test. mTBI significantly influenced habituation behavior and circadian wheel-running activity. Notably, mTBI mice exhibited an increased frequency of visits to the running wheel, but each visit was shorter than those of controls. No significant differences between the groups in discrimination or reversal learning performance were observed. However, during the reversal learning stage, mTBI mice performed similarly to their initial discrimination learning levels, suggesting an abnormally faster rate of reversal learning. Home cage monitoring is a valuable tool for studying the subtle effects of mTBI, complementing traditional assays. The automated evaluation of habituation to novel stimuli (e.g., novel environment) could serve as a potentially sensitive tool for assessing mTBI-associated behavioral deficits.

3.
Int J Mol Sci ; 24(13)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37446323

ABSTRACT

About 30% of major depression disorder patients fail to achieve remission, hence being diagnosed with treatment-resistant major depression (TRD). Opium had been largely used effectively to treat depression for centuries, but when other medications were introduced, its use was discounted due to addiction and other hazards. In a series of previous studies, we evaluated the antinociceptive effects of eight antidepressant medications and their interaction with the opioid system. Mice were tested with a hotplate or tail-flick after being injected with different doses of mianserin, mirtazapine, trazodone, venlafaxine, reboxetine, moclobemide, fluoxetine, or fluvoxamine to determine the effect of each drug in eliciting antinociception. When naloxone inhibited the antinociceptive effect, we further examined the effect of the specific opioid antagonists of each antidepressant drug. Mianserin and mirtazapine (separately) induced dose-dependent antinociception, each one yielding a biphasic dose-response curve, and they were antagonized by naloxone. Trazodone and venlafaxine (separately) induced a dose-dependent antinociceptive effect, antagonized by naloxone. Reboxetine induced a weak antinociceptive effect with no significant opioid involvement, while moclobemide, fluoxetine, and fluvoxamine had no opioid-involved antinociceptive effects. Controlled clinical studies are needed to establish the efficacy of the augmentation of opiate antidepressants in persons with treatment-resistant depression and the optimal dosage of drugs prescribed.


Subject(s)
Analgesics, Opioid , Trazodone , Animals , Mice , Analgesics, Opioid/pharmacology , Analgesics, Opioid/therapeutic use , Mianserin/pharmacology , Mianserin/therapeutic use , Venlafaxine Hydrochloride/pharmacology , Venlafaxine Hydrochloride/therapeutic use , Fluvoxamine , Mirtazapine/pharmacology , Mirtazapine/therapeutic use , Fluoxetine , Reboxetine , Moclobemide , Depression , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Naloxone/pharmacology , Naloxone/therapeutic use , Dose-Response Relationship, Drug
4.
Biomedicines ; 11(5)2023 May 19.
Article in English | MEDLINE | ID: mdl-37239152

ABSTRACT

Traumatic brain injury (TBI) is considered the most common neurological disorder among people under the age of 50. In modern combat zones, a combination of TBI and organophosphates (OP) can cause both fatal and long-term effects on the brain. We utilized a mouse closed-head TBI model induced by a weight drop device, along with OP exposure to paraoxon. Spatial and visual memory as well as neuron loss and reactive astrocytosis were measured 30 days after exposure to mild TBI (mTBI) and/or paraoxon. Molecular and cellular changes were assessed in the temporal cortex and hippocampus. Cognitive and behavioral deficits were most pronounced in animals that received a combination of paraoxon exposure and mTBI, suggesting an additive effect of the insults. Neuron survival was reduced in proximity to the injury site after exposure to paraoxon with or without mTBI, whereas in the dentate gyrus hilus, cell survival was only reduced in mice exposed to paraoxon prior to sustaining a mTBI. Neuroinflammation was increased in the dentate gyrus in all groups exposed to mTBI and/or to paraoxon. Astrocyte morphology was significantly changed in mice exposed to paraoxon prior to sustaining an mTBI. These results provide further support for assumptions concerning the effects of OP exposure following the Gulf War. This study reveals additional insights into the potentially additive effects of OP exposure and mTBI, which may result in more severe brain damage on the modern battlefield.

5.
Front Behav Neurosci ; 17: 1140724, 2023.
Article in English | MEDLINE | ID: mdl-37035620

ABSTRACT

Traumatic brain injury (TBI) is a primary global health concern and one of the most common causes of neurological impairments in people under 50. Mild TBI (mTBI) accounts for the majority of TBI cases. Anxiety is the most common complaint after mTBI in humans. This study aims to evaluate behavioral tests designed to assess anxiety-like phenotypes in a mice model of mTBI. ICR mice underwent mTBI using the weight-drop model. Seven days post-injury, mice were subjected to one of five different behavioral tests: Elevated Plus Maze (EPM), Open Field apparatus (OF), Marble Burying test (MBT), Light Dark Box (LDB), and the Light Spot test within the PhenoTyper home cage (LS). In the EPM and OF tests, there were no significant differences between the groups. During the 30-min test period of the MBT, mTBI mice buried significantly more marbles than control mice. In the LDB, mTBI mice spent significantly less time on the far side of the arena than control mice. In addition, the time it took for mTBI mice to get to the far side of the arena was significantly longer compared to controls. Results of LS show significant within-group mean differences for total distance traveled for mTBI mice but not for the control. Furthermore, injured mice moved significantly more than control mice. According to the results, the anxiety traits exhibited by mTBI mice depend upon the time of exposure to the aversive stimulus, the apparatus, and the properties of the stressors used. Therefore, the characterization of anxiety-like behavior in mTBI mice is more complicated than was initially suggested. Based on our findings, we recommend incorporating a variety of stressors and test session lengths when assessing anxiety-like behavior in experimental models of mTBI.

6.
AIMS Neurosci ; 10(1): 33-51, 2023.
Article in English | MEDLINE | ID: mdl-37077956

ABSTRACT

Background: In the fear memory network, the hippocampus modulates contextual aspects of fear learning while mutual connections between the amygdala and the medial prefrontal cortex are widely involved in fear extinction. G-protein-coupled receptors (GPCRs) are involved in the regulation of fear and anxiety, so the regulation of GPCRs in fear signaling pathways can modulate the mechanisms of fear memory acquisition, consolidation and extinction. Various studies suggested a role of M-type K+ channels in modulating fear expression and extinction, although conflicting data prevented drawing of clear conclusions. In the present work, we examined the impact of M-type K+ channel blockade or activation on contextual fear acquisition and extinction. In addition, regarding the pivotal role of the hippocampus in contextual fear conditioning (CFC) and the involvement of the axon initial segment (AIS) in neuronal plasticity, we investigated whether structural alterations of the AIS in hippocampal neurons occurred during contextual fear memory acquisition and short-time extinction in mice in a behaviorally relevant context. Results: When a single systemic injection of the M-channel blocker XE991 (2 mg/kg, IP) was carried out 15 minutes before the foot shock session, fear expression was significantly reduced. Expression of c-Fos was increased following CFC, mostly in GABAergic neurons at day 1 and day 2 post-fear training in CA1 and dentate gyrus hippocampal regions. A significantly longer AIS segment was observed in GABAergic neurons of the CA1 hippocampal region at day 2. Conclusions: Our results underscore the role of M-type K + channels in CFC and the importance of hippocampal GABAergic neurons in fear expression.

7.
Cereb Cortex ; 33(4): 1207-1216, 2023 02 07.
Article in English | MEDLINE | ID: mdl-35353131

ABSTRACT

INTRODUCTION: Homotopic functional connectivity (HoFC), the synchrony in activity patterns between homologous brain regions, is a fundamental characteristic of resting-state functional connectivity (RsFC). METHODS: We examined the difference in HoFC, computed as the correlation between atlas-based regions and their counterpart on the opposite hemisphere, in 16 moderate-severe traumatic brain injury patients (msTBI) and 36 healthy controls. Regions of decreased HoFC in msTBI patients were further used as seeds for examining differences between groups in correlations with other brain regions. Finally, we computed logistic regression models of regional HoFC and fractional anisotropy (FA) of the corpus callosum (CC). RESULTS: TBI patients exhibited decreased HoFC in the middle and posterior cingulate cortex, thalamus, superior temporal pole, and cerebellum III. Furthermore, decreased RsFC was found between left cerebellum III and right parahippocampal cortex and vermis, between superior temporal pole and left caudate and medial left and right frontal orbital gyri. Thalamic HoFC and FA of the CC discriminate patients as msTBI with a high accuracy of 96%. CONCLUSION: TBI is associated with regionally decreased HoFC. Moreover, a multimodality model of interhemispheric connectivity allowed for a high degree of accuracy in disease discrimination and enabled a deeper understanding of TBI effects on brain interhemispheric reorganization post-TBI.


Subject(s)
Brain Injuries, Traumatic , Magnetic Resonance Imaging , Humans , Brain/diagnostic imaging , Corpus Callosum , Brain Injuries, Traumatic/diagnostic imaging , Cerebral Cortex
8.
Am J Intellect Dev Disabil ; 127(5): 417-430, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36018766

ABSTRACT

We studied whether there exist variations in pain responses between different intellectual and developmental disability (IDD) etiologies. Self-reports and facial expressions (Facial Action Coding System = FACS) were recorded during experimental pressure stimuli and compared among 31 individuals with IDD-13 with cerebral palsy (CP), nine with Down syndrome (DS), nine with unspecified origin (UIDD)-and among 15 typically developing controls (TDCs). The CP and DS groups had higher pain ratings and FACS scores compared to the UIDD and TDC groups, and steeper stimulus-response functions. The DS group exhibited the most diverse facial expressions. There were variations in the foci of facial expressions between groups. It appears that different IDD etiologies display distinct pain responses.


Subject(s)
Cerebral Palsy , Down Syndrome , Intellectual Disability , Child , Developmental Disabilities , Facial Expression , Humans , Pain , Pain Measurement
9.
Molecules ; 27(9)2022 Apr 23.
Article in English | MEDLINE | ID: mdl-35566074

ABSTRACT

Traumatic Brain Injury (TBI), is one of the most common causes of neurological damage in young populations. It is widely considered as a risk factor for neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's (PD) disease. These diseases are characterized in part by the accumulation of disease-specific misfolded proteins and share common pathological features, such as neuronal death, as well as inflammatory and oxidative damage. Nano formulation of Pomegranate seed oil [Nano-PSO (Granagard TM)] has been shown to target its active ingredient to the brain and thereafter inhibit memory decline and neuronal death in mice models of AD and genetic Creutzfeldt Jacob disease. In this study, we show that administration of Nano-PSO to mice before or after TBI application prevents cognitive and behavioral decline. In addition, immuno-histochemical staining of the brain indicates that preventive Nano-PSO treatment significantly decreased neuronal death, reduced gliosis and prevented mitochondrial damage in the affected cells. Finally, we examined levels of Sirtuin1 (SIRT1) and Synaptophysin (SYP) in the cortex using Western blotting. Nano-PSO consumption led to higher levels of SIRT1 and SYP protein postinjury. Taken together, our results indicate that Nano-PSO, as a natural brain-targeted antioxidant, can prevent part of TBI-induced damage.


Subject(s)
Alzheimer Disease , Brain Injuries, Traumatic , Alzheimer Disease/metabolism , Animals , Brain/metabolism , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/pathology , Cognition , Mice , Plant Oils/chemistry , Sirtuin 1/metabolism
10.
Exp Neurol ; 352: 114022, 2022 06.
Article in English | MEDLINE | ID: mdl-35202640

ABSTRACT

BACKGROUND: Cognitive deficits are the most enduring and debilitating sequelae of mild traumatic brain injury (mTBI). However, relatively little is known about whether the cognitive effects of mTBI vary with respect to time post-injury, biological sex, and injury location. OBJECTIVES: The aim of this study was to assess the effect of the side and site of mTBI and to determine whether these effects are sexually dimorphic. METHODS: Male and female ICR mice were subjected to either a sham procedure or mTBI to the temporal lobes (right-sided or left-sided) or to the frontal lobes (bilateral) using a weight-drop model. After recovery, mice underwent a battery of behavioral tests at two post-injury time points. RESULTS: Different mTBI impact locations produced dissociable patterns of memory deficits; the extent of these deficits varied across sexes, time points, and memory domains. In both sexes, frontal mTBI mice exhibited a delayed onset of spatial memory deficits. Additionally, the performance of the frontal and left temporal injured males and females was more variable than that of controls. Interestingly, only in females does the effect of mTBI on visual recognition memory depend on the time post-injury. Moreover, only in females does spatial recognition memory remain relatively intact after mTBI to the left temporal lobe. CONCLUSION: This study showed that different mTBI impact sites produce dissociable and sex-specific patterns of cognitive deficits in mice. The results emphasize the importance of considering the injury site/side and biological sex when evaluating the cognitive sequelae of mTBI.


Subject(s)
Brain Concussion , Animals , Brain Concussion/complications , Cognition , Female , Male , Memory Disorders/etiology , Mice , Mice, Inbred ICR , Temporal Lobe
11.
Sci Rep ; 11(1): 23559, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34876621

ABSTRACT

Traumatic brain injury (TBI) is a brain dysfunction without present treatment. Previous studies have shown that animals fed ketogenic diet (KD) perform better in learning tasks than those fed standard diet (SD) following brain injury. The goal of this study was to examine whether KD is a neuroprotective in TBI mouse model. We utilized a closed head injury model to induce TBI in mice, followed by up to 30 days of KD/SD. Elevated levels of ketone bodies were confirmed in the blood following KD. Cognitive and behavioral performance was assessed post injury and molecular and cellular changes were assessed within the temporal cortex and hippocampus. Y-maze and Novel Object Recognition tasks indicated that mTBI mice maintained on KD displayed better cognitive abilities than mTBI mice maintained on SD. Mice maintained on SD post-injury demonstrated SIRT1 reduction when compared with uninjured and KD groups. In addition, KD management attenuated mTBI-induced astrocyte reactivity in the dentate gyrus and decreased degeneration of neurons in the dentate gyrus and in the cortex. These results support accumulating evidence that KD may be an effective approach to increase the brain's resistance to damage and suggest a potential new therapeutic strategy for treating TBI.


Subject(s)
Brain Injuries, Traumatic/diet therapy , Diet, Ketogenic , Animals , Anxiety , Astrocytes/pathology , Brain Injuries, Traumatic/blood , Brain Injuries, Traumatic/psychology , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Cognitive Dysfunction/diet therapy , Cognitive Dysfunction/psychology , Disease Models, Animal , Head Injuries, Closed/blood , Head Injuries, Closed/diet therapy , Head Injuries, Closed/psychology , Hippocampus/metabolism , Hippocampus/pathology , Ketone Bodies/blood , Male , Maze Learning , Mice , Mice, Inbred ICR , Neurons/pathology , Recognition, Psychology , Sirtuin 1/metabolism
12.
Neurotrauma Rep ; 2(1): 381-390, 2021.
Article in English | MEDLINE | ID: mdl-34723249

ABSTRACT

Current literature details an array of contradictory results regarding the effect of radiofrequency electromagnetic radiation (RF-EMR) on health, both in humans and in animal models. The present study was designed to ascertain the conflicting data published regarding the possible impact of cellular exposure (radiation) on male and female mice as far as spatial memory, anxiety, and general well-being is concerned. To increase the likelihood of identifying possible "subtle" effects, we chose to test it in already cognitively impaired (following mild traumatic brain injury; mTBI) mice. Exposure to cellular radiation by itself had no significant impact on anxiety levels or spatial/visual memory in mice. When examining the dual impact of mTBI and cellular radiation on anxiety, no differences were found in the anxiety-like behavior as seen at the elevated plus maze (EPM). When exposed to both mTBI and cellular radiation, our results show improvement of visual memory impairment in both female and male mice, but worsening of the spatial memory of female mice. These results do not allow for a decisive conclusion regarding the possible hazards of cellular radiation on brain function in mice, and the mTBI did not facilitate identification of subtle effects by augmenting them.

13.
Brain Sci ; 11(10)2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34679319

ABSTRACT

Pain management necessitates assessment of pain; the gold standard being self-report. Among individuals with intellectual and developmental disabilities (IDD), self-report may be limited and therefore indirect methods for pain assessment are required. A new, internationally agreed upon and user-friendly observational tool was recently published-the Pain Assessment in Impaired Cognition (PAIC-15). The current study's aims were: to test the use of the PAIC-15 in assessing pain among people with IDD and to translate the PAIC-15 into Arabic for dissemination among Arabic-speaking professionals. Pain behavior following experimental pressure stimuli was analyzed among 30 individuals with IDD and 15 typically developing controls (TDCs). Translation of the PAIC followed the forward-backward approach; and reliability between the two versions and between raters was calculated. Observational scores with the PAIC-15 exhibited a stimulus-response relationship with pressure stimulation. Those of the IDD group were greater than those of the TDC group. The overall agreement between the English and Arabic versions was high (ICC = 0.89); single items exhibited moderate to high agreement levels. Inter-rater reliability was high (ICC = 0.92). Both versions of the PAIC-15 are feasible and reliable tools to record pain behavior in individuals with IDD. Future studies using these tools in clinical settings are warranted.

14.
Front Behav Neurosci ; 15: 735387, 2021.
Article in English | MEDLINE | ID: mdl-34630052

ABSTRACT

The reproducibility crisis (or replication crisis) in biomedical research is a particularly existential and under-addressed issue in the field of behavioral neuroscience, where, in spite of efforts to standardize testing and assay protocols, several known and unknown sources of confounding environmental factors add to variance. Human interference is a major contributor to variability both within and across laboratories, as well as novelty-induced anxiety. Attempts to reduce human interference and to measure more "natural" behaviors in subjects has led to the development of automated home-cage monitoring systems. These systems enable prolonged and longitudinal recordings, and provide large continuous measures of spontaneous behavior that can be analyzed across multiple time scales. In this review, a diverse team of neuroscientists and product developers share their experiences using such an automated monitoring system that combines Noldus PhenoTyper® home-cages and the video-based tracking software, EthoVision® XT, to extract digital biomarkers of motor, emotional, social and cognitive behavior. After presenting our working definition of a "home-cage", we compare home-cage testing with more conventional out-of-cage tests (e.g., the open field) and outline the various advantages of the former, including opportunities for within-subject analyses and assessments of circadian and ultradian activity. Next, we address technical issues pertaining to the acquisition of behavioral data, such as the fine-tuning of the tracking software and the potential for integration with biotelemetry and optogenetics. Finally, we provide guidance on which behavioral measures to emphasize, how to filter, segment, and analyze behavior, and how to use analysis scripts. We summarize how the PhenoTyper has applications to study neuropharmacology as well as animal models of neurodegenerative and neuropsychiatric illness. Looking forward, we examine current challenges and the impact of new developments. Examples include the automated recognition of specific behaviors, unambiguous tracking of individuals in a social context, the development of more animal-centered measures of behavior and ways of dealing with large datasets. Together, we advocate that by embracing standardized home-cage monitoring platforms like the PhenoTyper, we are poised to directly assess issues pertaining to reproducibility, and more importantly, measure features of rodent behavior under more ethologically relevant scenarios.

15.
Biomolecules ; 11(4)2021 04 12.
Article in English | MEDLINE | ID: mdl-33921354

ABSTRACT

Thrombin is a Na+-activated allosteric serine protease of the chymotrypsin family involved in coagulation, inflammation, cell protection, and apoptosis. Increasingly, the role of thrombin in the brain has been explored. Low concentrations of thrombin are neuroprotective, while high concentrations exert pathological effects. However, greater attention regarding the involvement of thrombin in normal and pathological processes in the central nervous system is warranted. In this review, we explore the mechanisms of thrombin action, localization, and functions in the central nervous system and describe the involvement of thrombin in stroke and intracerebral hemorrhage, neurodegenerative diseases, epilepsy, traumatic brain injury, and primary central nervous system tumors. We aim to comprehensively characterize the role of thrombin in neurological disease and injury.


Subject(s)
Brain Injuries/metabolism , Brain Neoplasms/metabolism , Neurodegenerative Diseases/metabolism , Thrombin/metabolism , Animals , Humans
16.
J Anat ; 239(3): 589-601, 2021 09.
Article in English | MEDLINE | ID: mdl-33876427

ABSTRACT

Cervical spinal injury and neck pain are common disorders with wide physical implications. Neck pain and disability are reported to occur in females more often than in males, and chronic or persistent neck pain after whiplash is twice as common in females. Female athletes also sustain a higher percentage of concussions compared to male athletes. Still, while sexual differences in clinical presentation and outcome are well-established, the underlying etiology for the disparity remains less clear. It is well-established that the origin and insertion landmarks of posterior neck muscles are highly variable, but we do not know if these interindividual differences are associated with sex. Expanding our knowledge on sexual dimorphism in the anatomy of the cervical muscles is essential to our understanding of the possible biomechanical differences between the sexes and hence improves our understanding as to why females suffer from cervical pain more than males. It is also of paramount importance for accurate planning of posterior cervical spine surgery, which cuts through the posterior cervical musculature. Therefore, our main objective is to characterize the anatomy of posterior neck musculature and to explore possible sexual differences in the location of their attachment points. Meticulous posterior neck dissection was performed on 35 cadavers, 19 females, and 16 males. In each specimen, 8 muscle groups were examined bilaterally at 45 osseous anatomical landmarks. Muscles and their attachment sites were evaluated manually then photographed and recorded using Microscribe Digitizer technology built into 3D models. A comparison of attachment landmarks between males and females for each muscle was conducted. Out of the eight muscles that were measured, only two muscles demonstrated significant sex-related anatomical differences-Spinotranversales (splenius capitis and cervicis) and Multifidus. Male Spinotransversales muscle has more attachment points than female. It showed more cranial insertion points in the upper cervical attachments (superior nuchal line, C1 posterior tubercle, and mastoid process) and more caudal insertion points in the spinous processes and transverse processes of the lower cervical and upper thoracic vertebrae. Thus, the male subjects in this study exhibited a greater coverage of the posterior neck both cranially and caudally. Female Multifidus has more attachment points on the spinous processes and articular processes at middle and lower cervical vertebrae and at the transverse processes of the upper thoracic vertebrae. All remaining muscles exhibited no sexual differences. Our findings highlight, for the first time, a sexual dimorphism in attachment points of posterior cervical musculature. It reinforces the notion that the female neck is not a scaled version of the male neck. These differences in muscle attachment could partially explain differences in muscle torque production and range of motion and thus biomechanical differences in cervical spine stabilization between sexes. It sheds a much-needed light on the reason for higher whiplash rates, concussion, and chronic cervical pain among females. Surgeons should take these sexual morphological differences into consideration when deliberating the best surgical approach for posterior cervical surgery.


Subject(s)
Cervical Vertebrae/anatomy & histology , Neck Muscles/anatomy & histology , Neck Pain/pathology , Sex Characteristics , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged
17.
Brain Sci ; 11(2)2021 Feb 18.
Article in English | MEDLINE | ID: mdl-33670517

ABSTRACT

Individuals with intellectual and developmental disabilities (IDD) are at a high risk of experiencing pain. Pain management requires assessment, a challenging mission considering the impaired communication skills in IDD. We analyzed subjective and objective responses following calibrated experimental stimuli to determine whether they can differentiate between painful and non-painful states, and adequately quantify pain among individuals with IDD. Eighteen adults with IDD and 21 healthy controls (HC) received experimental pressure stimuli (innocuous, mildly noxious, and moderately noxious). Facial expressions (analyzed with the Facial Action Coding System (FACS)) and autonomic function (heart rate, heart rate variability (HRV), pulse, and galvanic skin response (GSR)) were continuously monitored, and self-reports using a pyramid and a numeric scale were obtained. Significant stimulus-response relationships were observed for the FACS and pyramid scores (but not for the numeric scores), and specific action units could differentiate between the noxious levels among the IDD group. FACS scores of the IDD group were higher and steeper than those of HC. HRV was overall lower among the IDD group, and GSR increased during noxious stimulation in both groups. In conclusion, the facial expressions and self-reports seem to reliably detect and quantify pain among individuals with mild-moderate IDD; their enhanced responses may indicate increased pain sensitivity that requires careful clinical consideration.

18.
J Mol Neurosci ; 71(1): 178-186, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32901372

ABSTRACT

The present paper shows how cinnamon extract (CE) consumption mitigates neuronal loss and memory impairment following traumatic brain injury (TBI), one of the world's most common neurodegenerative diseases. TBI patients suffer short- and long-term behavioral, cognitive, and emotional impairments, including difficulties in concentration, memory loss, and depression. Research shows that CE application can mitigate cognitive and behavioral impairments in animal models for Alzheimer's and Parkinson's disease, whose pathophysiology is similar to that of TBI. This study builds on prior research by showing similar results in TBI mice models. After drinking CE for a week, mice were injured using our 70-g weight drop TBI device. For 2 weeks thereafter, the mice continued drinking CE alongside standard lab nutrition. Subsequently, the mice underwent behavioral tests to assess their memory, motor activity, and anxiety. The mice brains were harvested for immunohistochemistry staining to evaluate overall neuronal survival. Our results show that CE consumption almost completely mitigates memory impairment and decreases neuronal loss after TBI. Mice that did not consume CE demonstrated impaired memory. Our results also show that CE consumption attenuated neuronal loss in the temporal cortex and the dentate gyrus. Mice that did not consume CE suffered a significant neuronal loss. There were no significant differences in anxiety levels and motor activity between all groups. These findings show a new therapeutic approach to improve cognitive function and decrease memory loss after TBI.


Subject(s)
Brain Injuries, Traumatic/drug therapy , Cinnamomum zeylanicum , Cognition Disorders/prevention & control , Memory Disorders/prevention & control , Phytotherapy , Plant Extracts/therapeutic use , Administration, Oral , Animals , Anxiety/drug therapy , Anxiety/etiology , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/pathology , Cell Count , Cognition Disorders/drug therapy , Cognition Disorders/etiology , Elevated Plus Maze Test , Exploratory Behavior , Locomotion/drug effects , Male , Maze Learning/drug effects , Memory Disorders/drug therapy , Memory Disorders/etiology , Mice , Mice, Inbred ICR , Neurons/pathology , Plant Extracts/pharmacology , Recognition, Psychology/drug effects , Water
19.
Stress ; 24(2): 229-238, 2021 03.
Article in English | MEDLINE | ID: mdl-32510284

ABSTRACT

The aim of this study was to investigate the behavioral, immunological, and neurological effects of long-term isolation in an animal model. Male C3H/eB mice wereraised in either social isolation or standard conditions for 6 weeks. At 10 weeks, each group was further divided into 3 sets. (A) Physical strength and behavior were evaluated with the grip strength, hot plate, staircase, and elevated plus-maze tests. Natural-killer cell activity and lymphocyte proliferation were measured. (B) Half the animals were subjected to electric shock with 3 reminders, and freezing time was evaluated at each reminder. Cortisone levels were evaluated after 16 weeks. (C)Mice were injected with 38 C-13 B lymphoma cells and followed for tumor size and survival. Strength evaluation yielded asignificantly lower body weight and grip strength in the socially isolated mice. Behavioral test results were similar in the two groups. The pattern of reactions to stress conditioning differed significantly, with the socially isolated mice showing an incline in freezing with each successive reminder, and the control mice showing a decline. The socially isolated mice had significantly attenuated tumor growth, with no significant difference in survival from control mice. There were no significant between-group differences in immunological parameters. In conclusion, social isolation serves as a model for chronic stress. It was associated with significant changes in stress conditioning reaction, resembling symptoms of post-traumatic stress disorder, and attenuated tumor development. No differences from controls were found in behavior tests, immune parameters, or survival after tumor cell inoculation.Lay summaryThis article explores biological and behavioral consequences of social isolation in a mice model. Our results show that social isolation leads to changes in the Hypothalamic-hypophyseal-adrenal axis, which in turn alter the response to stress. Additionally, social isolation was shown to impact tumor progression.


Subject(s)
Social Isolation , Stress Disorders, Post-Traumatic , Animals , Behavior, Animal , Corticosterone , Male , Mice , Mice, Inbred C3H , Pituitary-Adrenal System , Stress, Psychological
20.
Mol Cell Neurosci ; 111: 103586, 2021 03.
Article in English | MEDLINE | ID: mdl-33358995

ABSTRACT

INTRODUCTION: Mild traumatic brain injury (mTBI) is common and associated with cognitive impairment. Stress and mTBI are known to modulate the neural function. The present study aims at exploring the effect of prior stress exposure on cognitive function following mTBI. METHODS: Eight weeks old male ICR mice were subjected to either stress induced by forced swimming stress alone, stress followed by an immediate mTBI, or stress followed by 30 min break and then mTBI. We had two control groups: SHAM group - a control group which was not exposed to stress nor to mTBI and control mTBI group - a control group which was exposed only to TBI with no stress. Mice were weighed prior and at 12, 24 h and 1 week following interventions. Motor evaluation was conducted by rotarod. Behavioral changes were evaluated using open field, Y maze, elevated plus maze and staircase tests, at 12 h and 1 week following interventions. Brain levels of NMDAR subunits (R1, R2A, R2B), GABABR1, glucocorticoid and mineralocorticoid receptors (GR, MR) were evaluated using western blot. RESULTS: Stress alone, mTBI alone, and stress followed by immediate mTBI resulted in a significant weight loss compared to control (p < 0.05). Stress 30 min prior to mTBI had a protective effect on weight (p = 0.14 compared to control). The stress and mTBI alone groups showed reduced time at the center of the open field arena 1 week after intervention (p < 0.05 for both). Time in the novel arm of the Y maze was significantly shorter in the mTBI and stress followed by delayed mTBI (p = 0.02). Immediate stress prior to mTBI had normalized times in the novel arm (p = 0.95 compared to control). Combination of stress and mTBI significantly modified NMDAR subunits levels (increased NMDAR1, p < 0.008, decreased NMDAR2A p = 0.02) as well as increased MR levels (p = 0.04). CONCLUSION: Exposure to stress prior to mTBI may improve the cognitive consequences of mTBI. These data may point towards a novel, unexpected role of stress as a possible resilience mechanism in the setting of mTBI.


Subject(s)
Brain Injuries, Traumatic/physiopathology , Resilience, Psychological , Stress, Psychological/physiopathology , Animals , Brain/metabolism , Brain/physiopathology , Brain Injuries, Traumatic/psychology , Cognition , Long-Term Potentiation , Male , Mice , Mice, Inbred ICR , Movement , Receptors, GABA-B/metabolism , Receptors, Glucocorticoid/metabolism , Receptors, Mineralocorticoid/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...