Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Adv ; 10(29): eado6268, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39018395

ABSTRACT

From engineering improved device performance to unraveling the breakdown of classical heat transfer laws, far-field optical temperature mapping with nanoscale spatial resolution would benefit diverse areas. However, these attributes are traditionally in opposition because conventional far-field optical temperature mapping techniques are inherently diffraction limited. Optical super-resolution imaging techniques revolutionized biological imaging, but such approaches have yet to be applied to thermometry. Here, we demonstrate a super-resolution nanothermometry technique based on highly doped upconverting nanoparticles (UCNPs) that enable stimulated emission depletion (STED) super-resolution imaging. We identify a ratiometric thermometry signal and maintain imaging resolution better than ~120 nm for the relevant spectral bands. We also form self-assembled UCNP monolayers and multilayers and implement a detection scheme with scan times >0.25 µm2/min. We further show that STED nanothermometry reveals a temperature gradient across a joule-heated microstructure that is undetectable with diffraction limited thermometry, indicating the potential of this technique to uncover local temperature variation in wide-ranging practical applications.

2.
ACS Nanosci Au ; 4(1): 30-61, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38406316

ABSTRACT

As the field of luminescence thermometry has matured, practical applications of luminescence thermometry techniques have grown in both frequency and scope. Due to the biocompatibility of most luminescent thermometers, many of these applications fall within the realm of biology. However, luminescence thermometry is increasingly employed beyond the biological realm, with expanding applications in areas such as thermal characterization of microelectronics, catalysis, and plasmonics. Here, we review the motivations, methodologies, and advances linked to nonbiological applications of luminescence thermometry. We begin with a brief overview of luminescence thermometry probes and techniques, focusing on those most commonly used for nonbiological applications. We then address measurement capabilities that are particularly relevant for these applications and provide a detailed survey of results across various application categories. Throughout the review, we highlight measurement challenges and requirements that are distinct from those of biological applications. Finally, we discuss emerging areas and future directions that present opportunities for continued research.

3.
Opt Express ; 31(22): 36219-36227, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-38017776

ABSTRACT

Heat transfer in gases in the continuum regime follows Fourier's law and is well understood. However, it has been long understood that in the subcontinuum, rarefied gas regime Fourier's law is no longer valid and various models have been proposed to describe heat transfer in these systems. These models have very limited experimental exploration for spherical geometries due to the difficulties involved. Optically levitated nanoparticles are presented as the ideal experimental system to study heat transfer in rarefied gases due to their isolation from their environment. Nanodiamonds with nitrogen-vacancy centers are used to measure temperature. As the pressure decreases so does the heat transfer to the rarefied gas and the nanodiamond temperature increases by over 200 K. These experiments demonstrate the utility of optically levitated nanoparticles to study heat transfer in any gas across a wide range of pressures. In the future, these measurements can be combined with models to empirically determine the energy accommodation coefficient of any gas.

4.
Nat Commun ; 9(1): 4907, 2018 11 21.
Article in English | MEDLINE | ID: mdl-30464256

ABSTRACT

Individual luminescent nanoparticles enable thermometry with sub-diffraction limited spatial resolution, but potential self-heating effects from high single-particle excitation intensities remain largely uninvestigated because thermal models predict negligible self-heating. Here, we report that the common "ratiometric" thermometry signal of individual NaYF4:Yb3+,Er3+ nanoparticles unexpectedly increases with excitation intensity, implying a temperature rise over 50 K if interpreted as thermal. Luminescence lifetime thermometry, which we demonstrate for the first time using individual NaYF4:Yb3+,Er3+ nanoparticles, indicates a similar temperature rise. To resolve this apparent contradiction between model and experiment, we systematically vary the nanoparticle's thermal environment: the substrate thermal conductivity, nanoparticle-substrate contact resistance, and nanoparticle size. The apparent self-heating remains unchanged, demonstrating that this effect is an artifact, not a real temperature rise. Using rate equation modeling, we show that this artifact results from increased radiative and non-radiative relaxation from higher-lying Er3+ energy levels. This study has important implications for single-particle thermometry.

5.
Adv Mater ; 28(23): 4566, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27281044

ABSTRACT

On page 4684, C. Dames, L. Hu and co-workers report highly efficient, broadband lighting from printed hybrid nanocarbon structures with carbon nanotubes and reduced graphene oxides. The fast response and excellent stability of the flexible lighting can find applications in a range of emerging applications where the shape and format, as well as being lightweight, are important.

6.
Nanoscale ; 8(22): 11611-6, 2016 Jun 02.
Article in English | MEDLINE | ID: mdl-27216164

ABSTRACT

We demonstrate far-field optical thermometry using individual NaYF4 nanoparticles doped with 2% Er(3+) and 20% Yb(3+). Isolated 20 × 20 × 40 nm(3) particles were identified using only far-field optical imaging, confirmed by subsequent scanning electron microscopy. The luminescence thermometry response for five such single particles was characterized for temperatures from 300 K to 400 K. A standard Arrhenius model widely used for larger particles can still be accurately applied to these sub-50 nm particles, with good particle-to-particle uniformity (response coefficients exhibited standard deviations below 5%). With its spatial resolution on the order of 50 nm when imaging a single particle, far below the diffraction limit, this technique has potential applications for both fundamental thermal measurements and nanoscale metrology in industrial applications.

7.
Adv Mater ; 28(23): 4684-91, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27000725

ABSTRACT

Highly efficient broadband thermal radiation from reduced graphene oxide (RGO) paper mixed with single-walled carbon nanotubes (CNTs) is reported. These RGO-CNT paper ribbons routinely reach 3000 K before failure, with some samples exceeding 3300 K, higher than any other carbon nanomaterial. Excellent performance is achieved, with ≈90% radiation efficiency, 200 000 on/off cycles, and stable operation for more than 50 hours.

SELECTION OF CITATIONS
SEARCH DETAIL