Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 6182, 2021 03 17.
Article in English | MEDLINE | ID: mdl-33731743

ABSTRACT

The olive fruit fly, Bactrocera oleae, has been a key pest of olives in Europe and North America. We conducted the largest exploration for parasitoids associated with the fly across Sub-Saharan Africa (Kenya, Namibia, and South Africa) including some of the fly's adjoining regions (Canary Islands, Morocco, Réunion Island and Tunisia). From Sub-Saharan regions, four braconids were collected: Bracon celer, Psytallia humilis, P. lounsburyi, and Utetes africanus. Results showed that their regional dominance was related to climate niches, with P. humilis dominant in hot semi-arid areas of Namibia, P. lounsburyi dominant in more tropical areas of Kenya, and U. africanus prevalent in Mediterranean climates of South Africa. Psytallia concolor was found in the Canary Islands, Morocco and Tunisian, and the Afrotropical braconid Diachasmimorpha sp. near fullawayi on Réunion Island. Furthermore, we monitored the seasonal dynamics of the fly and parasitoids in Cape Province of South Africa. Results showed that fruit maturity, seasonal variations in climates and interspecific interactions shape the local parasitoid diversity that contribute to the low fly populations. The results are discussed with regard to ecological adaptations of closely associated parasitoids, and how their adaptations impact biocontrol.


Subject(s)
Hymenoptera/classification , Pest Control, Biological/methods , Tephritidae/parasitology , Africa South of the Sahara , Animals , Olea
2.
Insects ; 11(3)2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32110919

ABSTRACT

The olive psyllid, Euphyllura olivina, is a newly invasive species to California with the potential to become an economical pest if it reaches the olive production regions of California's Central Valley. Here, we report on surveys undertaken in California to assess the psyllid's current distribution and the occurrence of parasitism. Additionally, we present results of foreign collections of its parasitoids and initial non-target studies of a possible biological control agent, the Mediterranean parasitoid Psyllaephagus euphyllurae. The current distribution of the psyllid appears to be limited to the California coast between Monterey and San Diego; there have been no reports of infestations on olives in the major production areas of central and northern California. Psyllaephagus euphyllurae was the major primary parasitoid found in our foreign collections. The potential non-target impact of P. euphyllurae was tested on three native North American psyllid species: Neophyllura arctostaphyli, Euglyptoneura nr. robusta, and Calophya nigrella. No P. euphyllurae developed on the non-target species during no-choice tests. Behavioral observations in choice tests confirmed no attack on the non-target hosts, although the parasitoid did remain longer on N. arctostaphyli-infested manzanita plants, and revealed no host feeding behavior.

3.
Environ Entomol ; 43(2): 363-9, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24763093

ABSTRACT

Alfalfa trap crops are currently used to manage Lygus spp. in organic strawberry fields on the California Central Coast. The retention of Lygus spp. in alfalfa creates aggregated distributions that provide improved opportunities for biological control by the introduced parasitoid Peristenus relictus (Ruthe). The abundance and distribution of P. relictus between two trap crops separated by 50 strawberry rows were analyzed in 2008 and 2010. Parasitism of Lygus spp. nymphs by P. relictus (measured by larval abundance and % parasitism) was greatest in alfalfa trap crops compared with strawberry rows. A significantly positive correlation between host nymphs and P. relictus larvae in and between trap crops was found. Movement of P. relictus adults from a marked alfalfa trap crop into adjacent strawberry rows or trap crops was also studied in 2008 and 2009 using a chicken egg-albumin enzyme-linked immunosorbent assay mark-capture technique. In 2008 and 2009, 85 and 49% of protein-marked wasps were captured from central trap crops, respectively, indicating that alfalfa trap crops act as a concentrated "host-density anchor" in organic strawberry fields.


Subject(s)
Animal Distribution/physiology , Fragaria/parasitology , Heteroptera/parasitology , Host-Parasite Interactions/physiology , Medicago sativa/parasitology , Organic Agriculture/methods , Wasps/physiology , Analysis of Variance , Animals , California , Nymph/parasitology , Population Density
4.
Environ Entomol ; 42(4): 770-8, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23905741

ABSTRACT

Alfalfa (Medicago sativa L.) is a highly attractive plant host to Lygus spp. and is used as a trap crop in California organic strawberries to influence the dispersion and dispersal of these pests, particularly Lygus hesperus Knight. The abundance and distribution of Lygus spp. nymphs between two trap crops separated by 50 strawberry rows was analyzed in 2008 and 2010. Nymphs demonstrated a bimodal distribution in strawberries between trap crops, where nymphs were most abundant and aggregated in alfalfa, when compared with interior strawberry rows, where nymphs were less abundant. The majority of nymphs were concentrated in trap crops and nymphal densities in interior strawberry rows were well below economic thresholds. The movement of Lygus spp. from a marked alfalfa trap crop into adjacent strawberry rows or trap crops was also studied in 2008 and 2009 using a chicken egg albumin enzyme-linked immunosorbent assay mark-capture technique. The majority of marked-captured L. hesperus adults and Lygus spp. nymphs remained in alfalfa trap crops, rather than dispersing out into strawberry rows at 24 h, 48 h, and 2 wk, postprotein application. The attenuation of Lygus spp. movement in alfalfa associated with organic strawberries is a key component of successful trap cropping. A small percentage of marked adults and nymphs were captured in neighboring alfalfa trap crops, located 62 m from the point of protein application, highlighting the dispersal capacity of this key pest.


Subject(s)
Fragaria/growth & development , Herbivory , Heteroptera/physiology , Insect Control/methods , Medicago sativa/growth & development , Organic Agriculture/methods , Animal Distribution , Animals , California , Heteroptera/growth & development , Nymph/growth & development , Nymph/physiology , Seasons
5.
Environ Entomol ; 42(3): 467-76, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23726056

ABSTRACT

The overwintering survival and development of olive fruit fly, Bactrocera oleae (Rossi), and the endoparasitoids, Psyttalia humilis Silvestri and P. lounsburyi (Silvestri), were investigated at sites in California's interior valley and coastal region. In the interior valley, adult flies survived up to 4-6 mo during the winter when food was provided. Adult female flies could oviposit in late fall and early winter on nonharvested fruit and, although egg survival was low (0.23-8.50%), a portion of the overwintered cohort developed into adults the following spring; percentage of survival was negatively correlated to daily minimum temperature. P. humilis and P. lounsburyi successfully oviposited into host larvae in late fall, and their progeny developed into adults the following spring, although with a low percentage (0-11.9%) survivorship. Overwintering survival of puparia of the olive fruit fly and immature larvae of P. humilis and P. lounsburyi (inside host puparia), buried in the soil, were tested at an interior valley and coastal site. Survival of olive fruit fly ranged from 0 to 60% and was affected by the trial date and soil moisture. Overwintering survival of both the fruit fly and tested parasitoids was lower at the colder interior valley than the coastal site; P. humilis immature stages had the highest mortality levels while B. oleae pupae had the lowest mortality levels. The spring emergence pattern of the tested insects was well predicted by a degree-day model. We discuss factors potentially impeding establishment of introduced olive fruit fly parasitoids in California and elsewhere.


Subject(s)
Hymenoptera/physiology , Tephritidae/physiology , Tephritidae/parasitology , Animals , California , Ecosystem , Female , Hymenoptera/growth & development , Larva/growth & development , Larva/physiology , Olea/growth & development , Ovum/growth & development , Ovum/physiology , Pest Control, Biological , Pupa/growth & development , Pupa/physiology , Seasons , Survival , Tephritidae/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...