Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 554(7691): 239-243, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29420474

ABSTRACT

Distant-acting tissue-specific enhancers, which regulate gene expression, vastly outnumber protein-coding genes in mammalian genomes, but the functional importance of this regulatory complexity remains unclear. Here we show that the pervasive presence of multiple enhancers with similar activities near the same gene confers phenotypic robustness to loss-of-function mutations in individual enhancers. We used genome editing to create 23 mouse deletion lines and inter-crosses, including both single and combinatorial enhancer deletions at seven distinct loci required for limb development. Unexpectedly, none of the ten deletions of individual enhancers caused noticeable changes in limb morphology. By contrast, the removal of pairs of limb enhancers near the same gene resulted in discernible phenotypes, indicating that enhancers function redundantly in establishing normal morphology. In a genetic background sensitized by reduced baseline expression of the target gene, even single enhancer deletions caused limb abnormalities, suggesting that functional redundancy is conferred by additive effects of enhancers on gene expression levels. A genome-wide analysis integrating epigenomic and transcriptomic data from 29 developmental mouse tissues revealed that mammalian genes are very commonly associated with multiple enhancers that have similar spatiotemporal activity. Systematic exploration of three representative developmental structures (limb, brain and heart) uncovered more than one thousand cases in which five or more enhancers with redundant activity patterns were found near the same gene. Together, our data indicate that enhancer redundancy is a remarkably widespread feature of mammalian genomes that provides an effective regulatory buffer to prevent deleterious phenotypic consequences upon the loss of individual enhancers.


Subject(s)
Enhancer Elements, Genetic/genetics , Extremities/embryology , Gene Expression Regulation, Developmental/genetics , Phenotype , Animals , Brain/embryology , Female , Genome , Heart/embryology , Limb Deformities, Congenital/embryology , Limb Deformities, Congenital/genetics , Male , Mice , Sequence Deletion , Spatio-Temporal Analysis
2.
Cell ; 172(3): 491-499.e15, 2018 01 25.
Article in English | MEDLINE | ID: mdl-29358049

ABSTRACT

Non-coding "ultraconserved" regions containing hundreds of consecutive bases of perfect sequence conservation across mammalian genomes can function as distant-acting enhancers. However, initial deletion studies in mice revealed that loss of such extraordinarily constrained sequences had no immediate impact on viability. Here, we show that ultraconserved enhancers are required for normal development. Focusing on some of the longest ultraconserved sites genome wide, located near the essential neuronal transcription factor Arx, we used genome editing to create an expanded series of knockout mice lacking individual or combinations of ultraconserved enhancers. Mice with single or pairwise deletions of ultraconserved enhancers were viable and fertile but in nearly all cases showed neurological or growth abnormalities, including substantial alterations of neuron populations and structural brain defects. Our results demonstrate the functional importance of ultraconserved enhancers and indicate that remarkably strong sequence conservation likely results from fitness deficits that appear subtle in a laboratory setting.


Subject(s)
Conserved Sequence , Embryonic Development/genetics , Enhancer Elements, Genetic , Animals , Brain/abnormalities , Brain/embryology , Brain/metabolism , Female , Gene Deletion , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Male , Mice , Transcription Factors/genetics , Transcription Factors/metabolism
3.
PLoS Comput Biol ; 13(8): e1005720, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28827824

ABSTRACT

Epigenomic mapping of enhancer-associated chromatin modifications facilitates the genome-wide discovery of tissue-specific enhancers in vivo. However, reliance on single chromatin marks leads to high rates of false-positive predictions. More sophisticated, integrative methods have been described, but commonly suffer from limited accessibility to the resulting predictions and reduced biological interpretability. Here we present the Limb-Enhancer Genie (LEG), a collection of highly accurate, genome-wide predictions of enhancers in the developing limb, available through a user-friendly online interface. We predict limb enhancers using a combination of >50 published limb-specific datasets and clusters of evolutionarily conserved transcription factor binding sites, taking advantage of the patterns observed at previously in vivo validated elements. By combining different statistical models, our approach outperforms current state-of-the-art methods and provides interpretable measures of feature importance. Our results indicate that including a previously unappreciated score that quantifies tissue-specific nuclease accessibility significantly improves prediction performance. We demonstrate the utility of our approach through in vivo validation of newly predicted elements. Moreover, we describe general features that can guide the type of datasets to include when predicting tissue-specific enhancers genome-wide, while providing an accessible resource to the general biological community and facilitating the functional interpretation of genetic studies of limb malformations.


Subject(s)
Enhancer Elements, Genetic/genetics , Extremities/growth & development , Genomics/methods , Growth and Development/genetics , Software , Animals , Genome/genetics , Machine Learning , Mice
4.
Cell ; 167(3): 633-642.e11, 2016 Oct 20.
Article in English | MEDLINE | ID: mdl-27768887

ABSTRACT

The evolution of body shape is thought to be tightly coupled to changes in regulatory sequences, but specific molecular events associated with major morphological transitions in vertebrates have remained elusive. We identified snake-specific sequence changes within an otherwise highly conserved long-range limb enhancer of Sonic hedgehog (Shh). Transgenic mouse reporter assays revealed that the in vivo activity pattern of the enhancer is conserved across a wide range of vertebrates, including fish, but not in snakes. Genomic substitution of the mouse enhancer with its human or fish ortholog results in normal limb development. In contrast, replacement with snake orthologs caused severe limb reduction. Synthetic restoration of a single transcription factor binding site lost in the snake lineage reinstated full in vivo function to the snake enhancer. Our results demonstrate changes in a regulatory sequence associated with a major body plan transition and highlight the role of enhancers in morphological evolution. PAPERCLIP.


Subject(s)
Biological Evolution , Enhancer Elements, Genetic , Extremities/growth & development , Hedgehog Proteins/genetics , Snakes/genetics , Animals , Base Sequence , Evolution, Molecular , Gene Knock-In Techniques , Mice , Mice, Transgenic , Mutation , Phylogeny , Snakes/classification
5.
Nat Commun ; 7: 12923, 2016 10 05.
Article in English | MEDLINE | ID: mdl-27703156

ABSTRACT

Whole-genome sequencing is identifying growing numbers of non-coding variants in human disease studies, but the lack of accurate functional annotations prevents their interpretation. We describe the genome-wide landscape of distant-acting enhancers active in the developing and adult human heart, an organ whose impairment is a predominant cause of mortality and morbidity. Using integrative analysis of >35 epigenomic data sets from mouse and human pre- and postnatal hearts we created a comprehensive reference of >80,000 putative human heart enhancers. To illustrate the importance of enhancers in the regulation of genes involved in heart disease, we deleted the mouse orthologs of two human enhancers near cardiac myosin genes. In both cases, we observe in vivo expression changes and cardiac phenotypes consistent with human heart disease. Our study provides a comprehensive catalogue of human heart enhancers for use in clinical whole-genome sequencing studies and highlights the importance of enhancers for cardiac function.


Subject(s)
Enhancer Elements, Genetic , Heart/physiology , Animals , Echocardiography , Epigenomics , Female , Gene Expression Profiling , Gene Expression Regulation , Gene Expression Regulation, Developmental , Genome, Human , Histones/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation , Phenotype
6.
Genetics ; 195(2): 331-48, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23934893

ABSTRACT

Exploitation of custom-designed nucleases to induce DNA double-strand breaks (DSBs) at genomic locations of choice has transformed our ability to edit genomes, regardless of their complexity. DSBs can trigger either error-prone repair pathways that induce random mutations at the break sites or precise homology-directed repair pathways that generate specific insertions or deletions guided by exogenously supplied DNA. Prior editing strategies using site-specific nucleases to modify the Caenorhabditis elegans genome achieved only the heritable disruption of endogenous loci through random mutagenesis by error-prone repair. Here we report highly effective strategies using TALE nucleases and RNA-guided CRISPR/Cas9 nucleases to induce error-prone repair and homology-directed repair to create heritable, precise insertion, deletion, or substitution of specific DNA sequences at targeted endogenous loci. Our robust strategies are effective across nematode species diverged by 300 million years, including necromenic nematodes (Pristionchus pacificus), male/female species (Caenorhabditis species 9), and hermaphroditic species (C. elegans). Thus, genome-editing tools now exist to transform nonmodel nematode species into genetically tractable model organisms. We demonstrate the utility of our broadly applicable genome-editing strategies by creating reagents generally useful to the nematode community and reagents specifically designed to explore the mechanism and evolution of X chromosome dosage compensation. By developing an efficient pipeline involving germline injection of nuclease mRNAs and single-stranded DNA templates, we engineered precise, heritable nucleotide changes both close to and far from DSBs to gain or lose genetic function, to tag proteins made from endogenous genes, and to excise entire loci through targeted FLP-FRT recombination.


Subject(s)
Bacterial Proteins/genetics , CRISPR-Cas Systems/genetics , Caenorhabditis elegans/genetics , Endonucleases/genetics , Gene Editing/methods , INDEL Mutation/genetics , Animals , CRISPR-Associated Protein 9 , Caenorhabditis elegans/growth & development , DNA Breaks, Double-Stranded , Disorders of Sex Development/genetics , Evolution, Molecular , Female , Genome, Helminth , Male , Mutagenesis, Insertional/genetics , Recombinational DNA Repair/genetics , Ribonucleases/genetics , Sex Determination Processes
7.
Science ; 333(6040): 307, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21700836

ABSTRACT

Evolutionary studies necessary to dissect diverse biological processes have been limited by the lack of reverse genetic approaches in most organisms with sequenced genomes. We established a broadly applicable strategy using zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) for targeted disruption of endogenous genes and cis-acting regulatory elements in diverged nematode species.


Subject(s)
Caenorhabditis elegans/genetics , Caenorhabditis/genetics , Deoxyribonucleases, Type II Site-Specific/metabolism , Genetic Techniques , Genome, Helminth , Regulatory Elements, Transcriptional/genetics , Zinc Fingers , Animals , Deoxyribonucleases, Type II Site-Specific/genetics , Gene Targeting , Genes, Helminth , INDEL Mutation , Mutagenesis , Transcription Factors/chemistry , Transgenes
8.
Genes Dev ; 23(5): 602-18, 2009 Mar 01.
Article in English | MEDLINE | ID: mdl-19270160

ABSTRACT

In many species, a dosage compensation complex (DCC) is targeted to X chromosomes of one sex to equalize levels of X-gene products between males (1X) and females (2X). Here we identify cis-acting regulatory elements that target the Caenorhabditis elegans X chromosome for repression by the DCC. The DCC binds to discrete, dispersed sites on X of two types. rex sites (recruitment elements on X) recruit the DCC in an autonomous, DNA sequence-dependent manner using a 12-base-pair (bp) consensus motif that is enriched on X. This motif is critical for DCC binding, is clustered in rex sites, and confers much of X-chromosome specificity. Motif variants enriched on X by 3.8-fold or more are highly predictive (95%) for rex sites. In contrast, dox sites (dependent on X) lack the X-enriched variants and cannot bind the DCC when detached from X. dox sites are more prevalent than rex sites and, unlike rex sites, reside preferentially in promoters of some expressed genes. These findings fulfill predictions for a targeting model in which the DCC binds to recruitment sites on X and disperses to discrete sites lacking autonomous recruitment ability. To relate DCC binding to function, we identified dosage-compensated and noncompensated genes on X. Unexpectedly, many genes of both types have bound DCC, but many do not, suggesting the DCC acts over long distances to repress X-gene expression. Remarkably, the DCC binds to autosomes, but at far fewer sites and rarely at consensus motifs. DCC disruption causes opposite effects on expression of X and autosomal genes. The DCC thus acts at a distance to impact expression throughout the genome.


Subject(s)
Adenosine Triphosphatases/metabolism , Caenorhabditis elegans/physiology , DNA-Binding Proteins/metabolism , Dosage Compensation, Genetic/physiology , Gene Expression Regulation, Developmental , Genome, Helminth/physiology , Multiprotein Complexes/metabolism , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Consensus Sequence/genetics , Female , Genome, Helminth/genetics , Male , Protein Binding , Regulatory Elements, Transcriptional , X Chromosome/genetics , X Chromosome/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...