Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 295(12): 3808-3825, 2020 03 20.
Article in English | MEDLINE | ID: mdl-32029478

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal disease, characterized by the selective loss of motor neurons leading to paralysis. Mutations in the gene encoding superoxide dismutase 1 (SOD1) are the second most common cause of familial ALS, and considerable evidence suggests that these mutations result in an increase in toxicity due to protein misfolding. We previously demonstrated in the SOD1G93A rat model that misfolded SOD1 exists as distinct conformers and forms deposits on mitochondrial subpopulations. Here, using SOD1G93A rats and conformation-restricted antibodies specific for misfolded SOD1 (B8H10 and AMF7-63), we identified the interactomes of the mitochondrial pools of misfolded SOD1. This strategy identified binding proteins that uniquely interacted with either AMF7-63 or B8H10-reactive SOD1 conformers as well as a high proportion of interactors common to both conformers. Of this latter set, we identified the E3 ubiquitin ligase TNF receptor-associated factor 6 (TRAF6) as a SOD1 interactor, and we determined that exposure of the SOD1 functional loops facilitates this interaction. Of note, this conformational change was not universally fulfilled by all SOD1 variants and differentiated TRAF6 interacting from TRAF6 noninteracting SOD1 variants. Functionally, TRAF6 stimulated polyubiquitination and aggregation of the interacting SOD1 variants. TRAF6 E3 ubiquitin ligase activity was required for the former but was dispensable for the latter, indicating that TRAF6-mediated polyubiquitination and aggregation of the SOD1 variants are independent events. We propose that the interaction between misfolded SOD1 and TRAF6 may be relevant to the etiology of ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/pathology , Superoxide Dismutase-1/metabolism , TNF Receptor-Associated Factor 6/metabolism , Amyotrophic Lateral Sclerosis/metabolism , Animals , Antibodies/immunology , Cell Line , Disease Models, Animal , Mitochondria/metabolism , Mutagenesis, Site-Directed , NF-kappa B/metabolism , Protein Aggregates , Protein Folding , RNA Interference , RNA, Small Interfering/metabolism , Rats , Rats, Transgenic , Superoxide Dismutase-1/chemistry , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/immunology , TNF Receptor-Associated Factor 6/antagonists & inhibitors , TNF Receptor-Associated Factor 6/genetics , Ubiquitination
2.
Science ; 363(6428)2019 02 15.
Article in English | MEDLINE | ID: mdl-30765536

ABSTRACT

How hexanucleotide GGGGCC (G4C2) repeat expansions in C9orf72 cause frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) is not understood. We developed a mouse model engineered to express poly(PR), a proline-arginine (PR) dipeptide repeat protein synthesized from expanded G4C2 repeats. The expression of green fluorescent protein-conjugated (PR)50 (a 50-repeat PR protein) throughout the mouse brain yielded progressive brain atrophy, neuron loss, loss of poly(PR)-positive cells, and gliosis, culminating in motor and memory impairments. We found that poly(PR) bound DNA, localized to heterochromatin, and caused heterochromatin protein 1α (HP1α) liquid-phase disruptions, decreases in HP1α expression, abnormal histone methylation, and nuclear lamina invaginations. These aberrations of histone methylation, lamins, and HP1α, which regulate heterochromatin structure and gene expression, were accompanied by repetitive element expression and double-stranded RNA accumulation. Thus, we uncovered mechanisms by which poly(PR) may contribute to the pathogenesis of C9orf72-associated FTD and ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , C9orf72 Protein/metabolism , Dipeptides/metabolism , Heterochromatin/pathology , RNA, Double-Stranded/metabolism , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , Brain/metabolism , C9orf72 Protein/genetics , Chromobox Protein Homolog 5 , Chromosomal Proteins, Non-Histone/metabolism , Dipeptides/genetics , Disease Models, Animal , Green Fluorescent Proteins , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Nuclear Lamina/pathology , Repetitive Sequences, Nucleic Acid
3.
Nat Med ; 24(8): 1136-1142, 2018 08.
Article in English | MEDLINE | ID: mdl-29942091

ABSTRACT

The major genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) is a C9orf72 G4C2 repeat expansion1,2. Proposed mechanisms by which the expansion causes c9FTD/ALS include toxicity from repeat-containing RNA and from dipeptide repeat proteins translated from these transcripts. To investigate the contribution of poly(GR) dipeptide repeat proteins to c9FTD/ALS pathogenesis in a mammalian in vivo model, we generated mice that expressed GFP-(GR)100 in the brain. GFP-(GR)100 mice developed age-dependent neurodegeneration, brain atrophy, and motor and memory deficits through the accumulation of diffuse, cytoplasmic poly(GR). Poly(GR) co-localized with ribosomal subunits and the translation initiation factor eIF3η in GFP-(GR)100 mice and, of importance, in c9FTD/ALS patients. Combined with the differential expression of ribosome-associated genes in GFP-(GR)100 mice, these findings demonstrate poly(GR)-mediated ribosomal distress. Indeed, poly(GR) inhibited canonical and non-canonical protein translation in HEK293T cells, and also induced the formation of stress granules and delayed their disassembly. These data suggest that poly(GR) contributes to c9FTD/ALS by impairing protein translation and stress granule dynamics, consequently causing chronic cellular stress and preventing cells from mounting an effective stress response. Decreasing poly(GR) and/or interrupting interactions between poly(GR) and ribosomal and stress granule-associated proteins may thus represent potential therapeutic strategies to restore homeostasis.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , C9orf72 Protein/metabolism , Cytoplasmic Granules/metabolism , Dipeptides/pharmacology , Frontotemporal Dementia/metabolism , Protein Biosynthesis , Stress, Physiological , Animals , Behavior, Animal , Cluster Analysis , Cytoplasmic Granules/drug effects , Gene Expression Profiling , HEK293 Cells , Humans , Mice, Inbred C57BL , Protein Biosynthesis/drug effects , Ribosomal Proteins/metabolism , Stress, Physiological/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...