Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med Biol ; 68(19)2023 09 22.
Article in English | MEDLINE | ID: mdl-37652043

ABSTRACT

Objective. This study aimed to investigate the dosimetric impact of using population-based relative electron density (RED) overrides in lieu of simulation computerized tomography (CT) in a magnetic resonance linear accelerator (MRL) workflow for male pelvis patients. Additionally, the feasibility of using prostate specific membrane antigen positron emission tomography/CT (PSMA-PET/CT) scans to assess patients' eligibility for this proposed workflow was examined.Approach. In this study, 74 male pelvis patients treated on an Elekta Unity 1.5 T MRL were retrospectively selected. The patients' individual RED values for 8 organs of interest were extracted from their simulation-CT images to establish population-based RED values. These values were used to generate individual (IndD) and population-based (PopD) RED dose plans, representing current and proposed MRL workflows, respectively. Lastly, this study compared RED values obtained from CT and PET-CT scanners in a phantom and a subset of patients.Results. Population-based RED values were mostly within two standard deviations of ICRU Report 46 values. PopD plans were comparable to IndD plans, with the average %difference magnitudes of 0.5%, 0.6%, and 0.6% for mean dose (all organs), D0.1cm3(non-target organs) and D95%/D98% (target organs), respectively. Both phantom and patient PET-CT derived RED values had high agreement with corresponding CT-derived values, with correlation coefficients ≥ 0.9.Significance. Population-based RED values were considered suitable in a simulation-free MRL treatment workflow. Utilizing these RED values resulted in similar dosimetric uncertainties as per the current workflow. Initial findings also suggested that PET-CT scans may be used to assess prospective patients' eligibility for the proposed workflow. Future investigations will evaluate the clinical feasibility of implementing this workflow for prospective patients in the clinical setting. This is aimed to reduce patient burden during radiotherapy and increase department efficiencies.


Subject(s)
Electrons , Positron Emission Tomography Computed Tomography , Humans , Male , Prospective Studies , Retrospective Studies , Tomography, X-Ray Computed
2.
J Med Radiat Sci ; 70 Suppl 2: 99-106, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36502538

ABSTRACT

The introduction of magnetic resonance (MR) linear accelerators (MR-Linacs) into radiotherapy departments has increased in recent years owing to its unique advantages including the ability to deliver online adaptive radiotherapy. However, most radiation oncology professionals are not accustomed to working with MR technology. The integration of an MR-Linac into routine practice requires many considerations including MR safety, MR image acquisition and optimisation, image interpretation and adaptive radiotherapy strategies. This article provides an overview of training and credentialing requirements for radiation oncology professionals to develop competency and efficiency in delivering treatment safely on an MR-Linac.


Subject(s)
Radiation Oncologists , Radiotherapy, Image-Guided , Humans , Magnetic Resonance Imaging/methods , Particle Accelerators , Radiotherapy, Image-Guided/methods , Radiotherapy Planning, Computer-Assisted/methods , Magnetic Resonance Spectroscopy , Credentialing
3.
J Med Radiat Sci ; 70 Suppl 2: 94-98, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36572532

ABSTRACT

The introduction of magnetic resonance (MR) linear accelerators (MR-Linac) marks the beginning of a new era in radiotherapy. MR-Linac systems are currently being operated by teams of radiation therapists (RTs), radiation oncology medical physicists (ROMPs) and radiation oncologists (ROs) due to the diverse and complex tasks required to deliver treatment. This is resource-intensive and logistically challenging. RT-led service delivery at the treatment console is paramount to simplify the process and make the best use of this technology for suitable patients with commonly treated anatomical sites. This article will discuss the experiences of our department in developing and implementing an RT-led workflow on the 1.5 T MR-Linac.


Subject(s)
Radiation Oncology , Radiotherapy, Image-Guided , Humans , Magnetic Resonance Imaging , Radiotherapy Planning, Computer-Assisted , Magnetic Resonance Spectroscopy
4.
J Med Radiat Sci ; 68(4): 364-370, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34310846

ABSTRACT

INTRODUCTION: This study aimed to develop a single-isocentre volumetric modulated arc therapy (si-VMAT) technique for multiple brain metastases using knowledge-based planning software, comparing it with a multiple-isocentre stereotactic radiosurgery (mi-SRS) planning approach. METHODS: Twenty-six si-VMAT plans were created and uploaded into RapidPlanTM (RP) to create a si-VMAT model. Ten patients, with 2 to 6 metastases (mets), were planned with a si-VMAT technique utilising RP, and a mi-SRS technique on Brainlab iPlan. Paddick Conformity Index (PCI) was used to compare conformity. The volumes of the brain receiving 15Gy, 12Gy, 10Gy, 7.5Gy and 3Gy were also compared. Retrospective treatment times from the last eight patients treated were averaged for pre-imaging and beam on time to calculate treatment times for both techniques. RESULTS: There was a significant difference in the PCI scores for the mi-SRS plans (M = 0.667, SD = 0.114) and si-VMAT plans (M = 0.728, SD = 0.088), with PCI values suggesting better prescription dose conformity with the si-VMAT technique (P = 0.014). Percentage of total brain volume receiving low-dose wash at four of the five different dose levels was significantly less (P < 0.05) with mi-SRS. Average time to treat a single met with current mi-SRS technique is 25.7 min, with each additional met requiring this same amount of time. The average time to treat 2-3 mets using si-VMAT would be 25.3 min and 4+ metastases 33.5 min. CONCLUSION: A knowledge-based si-VMAT approach was efficient in planning and treating multi metastases while achieving clinically acceptable dosimetry with respect to dose conformity and low-dose fall off.


Subject(s)
Brain Neoplasms , Radiosurgery , Radiotherapy, Intensity-Modulated , Brain Neoplasms/radiotherapy , Brain Neoplasms/surgery , Humans , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...