Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
mBio ; 14(5): e0157323, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37642463

ABSTRACT

IMPORTANCE: This work has broad relevance due to the ubiquity of dyes containing azo bonds in food and drugs. We report that azo dyes can be degraded by human gut bacteria through both enzymatic and nonenzymatic mechanisms, even from a single gut bacterial species. Furthermore, we revealed that environmental factors, oxygen, and L-Cysteine control the ability of E. coli to degrade azo dyes due to their impacts on bacterial transcription and metabolism. These results open up new opportunities to manipulate the azoreductase activity of the gut microbiome through the manipulation of host diet, suggest that azoreductase potential may be altered in patients suffering from gastrointestinal disease, and highlight the importance of studying bacterial enzymes for drug metabolism in their natural cellular and ecological context.


Subject(s)
Escherichia coli Proteins , Iron-Sulfur Proteins , Humans , Coloring Agents/metabolism , Anaerobiosis , Escherichia coli/metabolism , Bacteria/metabolism , Azo Compounds/chemistry , Azo Compounds/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Iron-Sulfur Proteins/metabolism , Bacterial Proteins/metabolism
2.
Proc Natl Acad Sci U S A ; 117(27): 16009-16018, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32571913

ABSTRACT

Food and drug products contain diverse and abundant small-molecule additives (excipients) with unclear impacts on human physiology, drug safety, and response. Here, we evaluate their potential impact on intestinal drug absorption. By screening 136 unique compounds for inhibition of the key intestinal transporter OATP2B1 we identified and validated 24 potent OATP2B1 inhibitors, characterized by higher molecular weight and hydrophobicity compared to poor or noninhibitors. OATP2B1 inhibitors were also enriched for dyes, including 8 azo (R-N=N-R') dyes. Pharmacokinetic studies in mice confirmed that FD&C Red No. 40, a common azo dye excipient and a potent inhibitor of OATP2B1, decreased the plasma level of the OATP2B1 substrate fexofenadine, suggesting that FD&C Red No. 40 has the potential to block drug absorption through OATP2B1 inhibition in vivo. However, the gut microbiomes of multiple unrelated healthy individuals as well as diverse human gut bacterial isolates were capable of inactivating the identified azo dye excipients, producing metabolites that no longer inhibit OATP2B1 transport. These results support a beneficial role for the microbiome in limiting the unintended effects of food and drug additives in the intestine and provide a framework for the data-driven selection of excipients. Furthermore, the ubiquity and genetic diversity of gut bacterial azoreductases coupled to experiments in conventionally raised and gnotobiotic mice suggest that variations in gut microbial community structure may be less important to consider relative to the high concentrations of azo dyes in food products, which have the potential to saturate gut bacterial enzymatic activity.


Subject(s)
Bacteria/metabolism , Excipients/metabolism , Food Additives/metabolism , Food , Gastrointestinal Microbiome/physiology , Intestinal Absorption/physiology , Organic Anion Transporters/metabolism , ATP Binding Cassette Transporter, Subfamily B/genetics , Animals , Anti-Allergic Agents/metabolism , Anti-Allergic Agents/pharmacokinetics , Azo Compounds , Bacteria/isolation & purification , Excipients/pharmacokinetics , Female , Food Additives/pharmacokinetics , Histamine H1 Antagonists, Non-Sedating/metabolism , Histamine H1 Antagonists, Non-Sedating/pharmacokinetics , Humans , Intestinal Absorption/drug effects , Male , Mice , Mice, Inbred BALB C , Mice, Knockout , Terfenadine/analogs & derivatives , ATP-Binding Cassette Sub-Family B Member 4
3.
Cell ; 177(2): 478-491.e20, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30929901

ABSTRACT

Genomic studies have identified hundreds of candidate genes near loci associated with risk for schizophrenia. To define candidates and their functions, we mutated zebrafish orthologs of 132 human schizophrenia-associated genes. We created a phenotype atlas consisting of whole-brain activity maps, brain structural differences, and profiles of behavioral abnormalities. Phenotypes were diverse but specific, including altered forebrain development and decreased prepulse inhibition. Exploration of these datasets identified promising candidates in more than 10 gene-rich regions, including the magnesium transporter cnnm2 and the translational repressor gigyf2, and revealed shared anatomical sites of activity differences, including the pallium, hypothalamus, and tectum. Single-cell RNA sequencing uncovered an essential role for the understudied transcription factor znf536 in the development of forebrain neurons implicated in social behavior and stress. This phenotypic landscape of schizophrenia-associated genes prioritizes more than 30 candidates for further study and provides hypotheses to bridge the divide between genetic association and biological mechanism.


Subject(s)
Schizophrenia/genetics , Schizophrenia/physiopathology , Animals , Brain , Cerebral Cortex , Disease Models, Animal , Gene Expression Regulation/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Phenotype , Polymorphism, Single Nucleotide/genetics , Zebrafish/genetics
4.
Elife ; 82019 01 08.
Article in English | MEDLINE | ID: mdl-30620332

ABSTRACT

Hundreds of long non-coding RNAs (lncRNAs) have been identified as potential regulators of gene expression, but their functions remain largely unknown. To study the role of lncRNAs during vertebrate development, we selected 25 zebrafish lncRNAs based on their conservation, expression profile or proximity to developmental regulators, and used CRISPR-Cas9 to generate 32 deletion alleles. We observed altered transcription of neighboring genes in some mutants, but none of the lncRNAs were required for embryogenesis, viability or fertility. Even RNAs with previously proposed non-coding functions (cyrano and squint) and other conserved lncRNAs (gas5 and lnc-setd1ba) were dispensable. In one case (lnc-phox2bb), absence of putative DNA regulatory-elements, but not of the lncRNA transcript itself, resulted in abnormal development. LncRNAs might have redundant, subtle, or context-dependent roles, but extrapolation from our results suggests that the majority of individual zebrafish lncRNAs have no overt roles in embryogenesis, viability and fertility.


Subject(s)
Embryonic Development/genetics , Fertility/genetics , RNA, Long Noncoding/genetics , Zebrafish/embryology , Zebrafish/genetics , 3' Untranslated Regions/genetics , Animals , Genetic Loci , Mutation/genetics , Phenotype , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
5.
Drug Metab Dispos ; 46(11): 1588-1595, 2018 11.
Article in English | MEDLINE | ID: mdl-30111623

ABSTRACT

With a paradigm shift occurring in health care toward personalized and precision medicine, understanding the numerous environmental factors that impact drug disposition is of paramount importance. The highly diverse and variant nature of the human microbiome is now recognized as a factor driving interindividual variation in therapeutic outcomes. The purpose of this review is to provide a practical guide on methodology that can be applied to study the effects of microbes on the absorption, distribution, metabolism, and excretion of drugs. We also highlight recent examples of how these methods have been successfully applied to help build the basis for researching the intersection of the microbiome and pharmacology. Although in vitro and in vivo preclinical models are highlighted, these methods are also relevant in late-phase drug development or even as a part of routine after-market surveillance. These approaches will aid in filling major knowledge gaps for both current and upcoming therapeutics with the long-term goal of achieving a new type of knowledge-based medicine that integrates data on the host and the microbiome.


Subject(s)
Gastrointestinal Microbiome/physiology , Pharmaceutical Preparations/metabolism , Animals , Drug Discovery/methods , Humans , Inactivation, Metabolic/physiology
6.
Microbiology (Reading) ; 162(12): 2029-2041, 2016 12.
Article in English | MEDLINE | ID: mdl-27902432

ABSTRACT

To facilitate development of synthetic biology tools for genetic engineering of cyanobacterial strains, we constructed pANS-derived self-replicating shuttle vectors that are based on the minimal replication element of the Synechococcus elongatus strain PCC 7942 plasmid pANS. To remove the possibility of homologous recombination events between the shuttle plasmids and the native pANS plasmid, the endogenous pANS was cured through plasmid incompatibility-mediated spontaneous loss. A heterologous toxin-antitoxin cassette was incorporated into the shuttle vectors for stable plasmid maintenance in the absence of antibiotic selection. The pANS-based shuttle vectors were shown to be able to carry a large 20 kb DNA fragment containing a gene cluster for biosynthesis of the omega-3 fatty acid eicosapentaenoic acid. Based on quantitative PCR analysis, there are about 10 copies of pANS and 3 copies of the large native plasmid pANL per chromosome in S. elongatus. Fluorescence levels of GFP reporter genes in a pANS-based vector were about 2.5-fold higher than when in pANL or integrated into the chromosome. In addition to its native host, pANS-based shuttle vectors were also found to replicate stably in the filamentous cyanobacterium Anabaena sp. strain PCC 7120. There were about 27 copies of a pANS-based shuttle vector, 9 copies of a pDU1-based shuttle vector and 3 copies of an RSF1010-based shuttle vector per genome when these three plasmids co-existed in Anabaena cells. The endogenous pANS from our S. elongatus laboratory strain was cloned in Escherichia coli, re-sequenced and re-annotated to update previously published sequencing data.


Subject(s)
DNA Replication , Genetic Vectors/genetics , Plasmids/genetics , Synechococcus/genetics , Anabaena/genetics , Anabaena/metabolism , Genetic Vectors/metabolism , Plasmids/metabolism , Synechococcus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...