Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Dev Dyn ; 250(12): 1796-1809, 2021 12.
Article in English | MEDLINE | ID: mdl-34091971

ABSTRACT

BACKGROUND: Hand genes are required for the development of the vertebrate jaw, heart, peripheral nervous system, limb, gut, placenta, and decidua. Two Hand paralogues, Hand1 and Hand2, are present in most vertebrates, where they mediate different functions yet overlap in expression. In ray-finned fishes, Hand gene expression and function is only known for the zebrafish, which represents the rare condition of having a single Hand gene, hand2. Here we describe the developmental expression of hand1 and hand2 in the cichlid Copadichromis azureus. RESULTS: hand1 and hand2 are expressed in the cichlid heart, paired fins, pharyngeal arches, peripheral nervous system, gut, and lateral plate mesoderm with different degrees of overlap. CONCLUSIONS: Hand gene expression in the gut, peripheral nervous system, and pharyngeal arches may have already been fixed in the lobe- and ray-finned fish common ancestor. In other embryonic regions, such as paired appendages, hand2 expression was fixed, while hand1 expression diverged in lobe- and ray-finned fish lineages. In the lateral plate mesoderm and arch associated catecholaminergic cells, hand1 and hand2 swapped expression between divergent lineages. Distinct expression of cichlid hand1 and hand2 in the epicardium and myocardium of the developing heart may represent the ancestral pattern for bony fishes.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Cichlids/embryology , Embryonic Development/genetics , Animal Fins/embryology , Animal Fins/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Branchial Region/embryology , Branchial Region/metabolism , Cichlids/genetics , Cichlids/metabolism , Embryo, Nonmammalian , Gene Expression Regulation, Developmental , Heart/embryology , Intestines/embryology , Intestines/metabolism , Mesoderm/embryology , Mesoderm/metabolism , Myocardium/metabolism , Peripheral Nervous System/embryology , Peripheral Nervous System/metabolism , Sequence Homology , Skull/embryology , Skull/metabolism , Tooth/embryology , Tooth/metabolism , Zebrafish/embryology , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
2.
ACS Appl Mater Interfaces ; 2(9): 2560-9, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20795650

ABSTRACT

With growing interest in the development of new composite systems for a variety of applications that require easily processable materials and adequate structural properties with high energy densities, we have pursued the chemical functionalization of oxide-passivated aluminum nanoparticles (nAl) using three acrylic monomers, 3-methacryloxypropyltrimethoxysilane (MPS), 2-carboxyethyl acrylate (CEA), and phosphonic acid 2-hydroxyethyl methacrylate ester (PAM), to provide chemical compatibility within various solvent and polymeric systems. Fourier transform infrared and X-ray photoelectron spectroscopy suggest that attachment of MPS and PAM monomers occurs through the formation of bonds directly to the passivated oxide surface upon reaction with surface hydroxyls, whereas CEA monomers interact through the formation of ionic carboxylate binding to aluminum atoms within the oxide. The coated particles demonstrate enhanced miscibility in common organic solvents and monomers; MPS and PAM coatings are additionally shown to inhibit oxidation of the aluminum particles when exposed to aqueous environments at room temperature, and PAM coatings are stable at even elevated temperatures.


Subject(s)
Acrylic Resins/chemistry , Aluminum/chemistry , Colloids/chemistry , Nanoparticles/chemistry , Solvents/chemistry , Water/chemistry , Materials Testing , Nanoparticles/ultrastructure , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL