Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
2.
Front Microbiol ; 14: 1079855, 2023.
Article in English | MEDLINE | ID: mdl-36910171

ABSTRACT

Introduction: The human blood fluke parasite Schistosoma mansoni relies on diverse mechanisms to adapt to its diverse environments and hosts. Epigenetic mechanisms play a central role in gene expression regulation, culminating in such adaptations. Protein arginine methyltransferases (PRMTs) promote posttranslational modifications, modulating the function of histones and non-histone targets. The coactivator-associated arginine methyltransferase 1 (CARM1/PRMT4) is one of the S. mansoni proteins with the PRMT core domain. Methods: We carried out in silico analyses to verify the expression of SmPRMTs in public datasets from different infection stages, single-sex versus mixed-worms, and cell types. The SmCARM1 function was evaluated by RNA interference. Gene expression levels were assessed, and phenotypic alterations were analyzed in vitro, in vivo, and ex vivo. Results: The scRNAseq data showed that SmPRMTs expression is not enriched in any cell cluster in adult worms or schistosomula, except for Smcarm1 expression which is enriched in clusters of ambiguous cells and Smprmt1 in NDF+ neurons and stem/germinal cells from schistosomula. Smprmt1 is also enriched in S1 and late female germ cells from adult worms. After dsRNA exposure in vitro, we observed a Smcarm1 knockdown in schistosomula and adult worms, 83 and 69%, respectively. Smcarm1-knockdown resulted in reduced oviposition and no significant changes in the schistosomula or adult worm phenotypes. In vivo analysis after murine infection with Smcarm1 knocked-down schistosomula, showed no significant change in the number of worms recovered from mice, however, a significant reduction in the number of eggs recovered was detected. The ex vivo worms presented a significant decrease in the ovary area with a lower degree of cell differentiation, vitelline glands cell disorganization, and a decrease in the testicular lobe area. The worm tegument presented a lower number of tubercles, and the ventral sucker of the parasites presented a damaged tegument and points of detachment from the parasite body. Discussion: This work brings the first functional characterization of SmCARM1 shedding light on its roles in S. mansoni biology and its potential as a drug target. Additional studies are necessary to investigate whether the reported effects of Smcarm1 knockdown are a consequence of the SmCARM1-mediated methylation of histone tails involved in DNA packaging or other non-histone proteins.

3.
Pharmaceuticals (Basel) ; 15(1)2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35056137

ABSTRACT

Schistosomiasis is a major neglected parasitic disease that affects more than 240 million people worldwide and for which the control strategy consists of mass treatment with the only available drug, praziquantel. Schistosomes display morphologically distinct stages during their life cycle and the transformations between stages are controlled by epigenetic mechanisms. The targeting of epigenetic actors might therefore represent the parasites' Achilles' heel. Specifically, histone deacetylases have been recently characterized as drug targets for the treatment of schistosomiasis. This review focuses on the recent development of inhibitors for schistosome histone deacetylases. In particular, advances in the development of inhibitors of Schistosoma mansoni histone deacetylase 8 have indicated that targeting this enzyme is a promising approach for the treatment of this infection.

4.
Cell Rep ; 37(12): 110129, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34936867

ABSTRACT

Writing and erasing of posttranslational modifications are crucial to phenotypic plasticity and antigenic variation of eukaryotic pathogens. Targeting pathogens' modification machineries, thus, represents a valid approach to fighting parasitic diseases. However, identification of parasitic targets and the development of selective anti-parasitic drugs still represent major bottlenecks. Here, we show that the zinc-dependent histone deacetylases (HDACs) of the protozoan parasite Trypanosoma cruzi are key regulators that have significantly diverged from their human counterparts. Depletion of T. cruzi class I HDACs tcDAC1 and tcDAC2 compromises cell-cycle progression and division, leading to cell death. Notably, tcDAC2 displays a deacetylase activity essential to the parasite and shows major structural differences with human HDACs. Specifically, tcDAC2 harbors a modular active site with a unique subpocket targeted by inhibitors showing substantial anti-parasitic effects in cellulo and in vivo. Thus, the targeting of the many atypical HDACs in pathogens can enable anti-parasitic selective chemical impairment.


Subject(s)
Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Trypanosoma cruzi/enzymology , Trypanosoma cruzi/genetics , Trypanosoma cruzi/metabolism , Animals , Catalytic Domain , Cell Cycle , Cell Division/drug effects , Cell Line , Cell Proliferation/drug effects , Chagas Disease/drug therapy , Chagas Disease/parasitology , Chlorocebus aethiops , DNA, Protozoan , Female , Genetic Complementation Test , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylases/chemistry , Host-Parasite Interactions , Humans , Male , Mice , Mice, Inbred BALB C , Models, Molecular , Phylogeny , Protein Conformation , Protein Processing, Post-Translational , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Sequence Deletion , Trypanosoma cruzi/drug effects , Vero Cells
5.
PLoS Negl Trop Dis ; 15(11): e0009503, 2021 11.
Article in English | MEDLINE | ID: mdl-34843489

ABSTRACT

BACKGROUND: Schistosoma mansoni histone deacetylase 8 (SmHDAC8) has elicited considerable interest as a target for drug discovery. Invalidation of its transcripts by RNAi leads to impaired survival of the worms in infected mice and its inhibition causes cell apoptosis and death. To determine why it is a promising therapeutic target the study of the currently unknown cellular signaling pathways involving this enzyme is essential. Protein partners of SmHDAC8 were previously identified by yeast two-hybrid (Y2H) cDNA library screening and by mass spectrometry (MS) analysis. Among these partners we characterized SmRho1, the schistosome orthologue of human RhoA GTPase, which is involved in the regulation of the cytoskeleton. In this work, we validated the interaction between SmHDAC8 and SmRho1 and explored the role of the lysine deacetylase in cytoskeletal regulation. METHODOLOGY/PRINCIPAL FINDINGS: We characterized two isoforms of SmRho1, SmRho1.1 and SmRho1.2. Co- immunoprecipitation (Co-IP)/Mass Spectrometry (MS) analysis identified SmRho1 partner proteins and we used two heterologous expression systems (Y2H assay and Xenopus laevis oocytes) to study interactions between SmHDAC8 and SmRho1 isoforms. To confirm SmHDAC8 and SmRho1 interaction in adult worms and schistosomula, we performed Co-IP experiments and additionally demonstrated SmRho1 acetylation using a Nano LC-MS/MS approach. A major impact of SmHDAC8 in cytoskeleton organization was documented by treating adult worms and schistosomula with a selective SmHDAC8 inhibitor or using RNAi followed by confocal microscopy. CONCLUSIONS/SIGNIFICANCE: Our results suggest that SmHDAC8 is involved in cytoskeleton organization via its interaction with the SmRho1.1 isoform. The SmRho1.2 isoform failed to interact with SmHDAC8, but did specifically interact with SmDia suggesting the existence of two distinct signaling pathways regulating S. mansoni cytoskeleton organization via the two SmRho1 isoforms. A specific interaction between SmHDAC8 and the C-terminal moiety of SmRho1.1 was demonstrated, and we showed that SmRho1 is acetylated on K136. SmHDAC8 inhibition or knockdown using RNAi caused extensive disruption of schistosomula actin cytoskeleton.


Subject(s)
GTP Phosphohydrolases/chemistry , Histone Deacetylases/chemistry , Schistosoma mansoni/metabolism , rhoA GTP-Binding Protein/chemistry , Acetylation , Animals , Female , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Humans , Male , Mice , Mice, Inbred BALB C , Oocytes , RNA Interference , Schistosoma mansoni/genetics , Tandem Mass Spectrometry , Xenopus laevis , rhoA GTP-Binding Protein/genetics , rhoA GTP-Binding Protein/metabolism
6.
PLoS Negl Trop Dis ; 14(7): e0008332, 2020 07.
Article in English | MEDLINE | ID: mdl-32609727

ABSTRACT

Treatment and control of schistosomiasis still rely on only one effective drug, praziquantel (PZQ) and, due to mass treatment, the increasing risk of selecting for schistosome strains that are resistant to PZQ has alerted investigators to the urgent need to develop novel therapeutic strategies. The histone-modifying enzymes (HMEs) represent promising targets for the development of epigenetic drugs against Schistosoma mansoni. In the present study, we targeted the S. mansoni lysine-specific demethylase 1 (SmLSD1), a transcriptional corepressor, using a novel and selective synthetic inhibitor, MC3935, which was used to treat schistosomula and adult worms in vitro. By using cell viability assays and optical and electron microscopy, we showed that treatment with MC3935 affected parasite motility, egg-laying, tegument, and cellular organelle structures, culminating in the death of schistosomula and adult worms. In silico molecular modeling and docking analysis suggested that MC3935 binds to the catalytic pocket of SmLSD1. Western blot analysis revealed that MC3935 inhibited SmLSD1 demethylation activity of H3K4me1/2. Knockdown of SmLSD1 by RNAi recapitulated MC3935 phenotypes in adult worms. RNA-Seq analysis of MC3935-treated parasites revealed significant differences in gene expression related to critical biological processes. Collectively, our findings show that SmLSD1 is a promising drug target for the treatment of schistosomiasis and strongly support the further development and in vivo testing of selective schistosome LSD1 inhibitors.


Subject(s)
Enzyme Inhibitors/pharmacology , Histone Demethylases/antagonists & inhibitors , Schistosoma mansoni/drug effects , Schistosoma mansoni/ultrastructure , Schistosomiasis mansoni/drug therapy , Animals , Anthelmintics/pharmacology , Drug Resistance , Microscopy, Electron, Scanning , Oviposition/drug effects , Praziquantel/pharmacology , Schistosomiasis mansoni/parasitology , Schistosomiasis mansoni/pathology
7.
ChemMedChem ; 15(7): 571-584, 2020 04 03.
Article in English | MEDLINE | ID: mdl-31816172

ABSTRACT

Schistosomiasis is a neglected tropical disease caused by parasitic flatworms of the genus Schistosoma, which affects over 200 million people worldwide and leads to at least 300,000 deaths every year. In this study, initial screening revealed the triazole-based hydroxamate 2 b (N-hydroxy-1-phenyl-1H-1,2,3-triazole-4-carboxamide) exhibiting potent inhibitory activity toward the novel antiparasitic target Schistosoma mansoni histone deacetylase 8 (smHDAC8) and promising selectivity over the major human HDACs. Subsequent crystallographic studies of the 2 b/smHDAC8 complex revealed key interactions between the inhibitor and the enzyme's active site, thus explaining the unique selectivity profile of the inhibitor. Further chemical modifications of 2 b led to the discovery of 4-fluorophenoxy derivative 21 (1-[5-chloro-2-(4-fluorophenoxy)phenyl]-N-hydroxy-1H-1,2,3-triazole-4-carboxamide), a nanomolar smHDAC8 inhibitor (IC50 =0.5 µM), exceeding the smHDAC8 inhibitory activity of 2 b and SAHA (vorinostat), while exhibiting an improved selectivity profile over the investigated human HDACs. Collectively, this study reveals specific interactions between smHDAC8 and the synthesized triazole-based inhibitors and demonstrates that these small molecules represent promising lead structures, which could be further developed in the search for novel drugs for the treatment of schistosomiasis.


Subject(s)
Drug Design , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Schistosoma mansoni/enzymology , Schistosomiasis/drug therapy , Triazoles/pharmacology , Animals , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/chemistry , Humans , Models, Molecular , Molecular Structure , Repressor Proteins/antagonists & inhibitors , Repressor Proteins/metabolism , Schistosomiasis/metabolism , Triazoles/chemical synthesis , Triazoles/chemistry
8.
Plos Negl Trop Dis, v. 14, n. 7, e0008332, jul. 2020
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3085

ABSTRACT

Treatment and control of schistosomiasis still rely on only one effective drug, praziquantel (PZQ) and, due to mass treatment, the increasing risk of selecting for schistosome strains that are resistant to PZQ has alerted investigators to the urgent need to develop novel therapeutic strategies. The histone-modifying enzymes (HMEs) represent promising targets for the development of epigenetic drugs against Schistosoma mansoni. In the present study, we targeted the S. mansoni lysine-specific demethylase 1 (SmLSD1), a transcriptional corepressor, using a novel and selective synthetic inhibitor, MC3935, which was used to treat schistosomula and adult worms in vitro. By using cell viability assays and optical and electron microscopy, we showed that treatment with MC3935 affected parasite motility, egg-laying, tegument, and cellular organelle structures, culminating in the death of schistosomula and adult worms. In silico molecular modeling and docking analysis suggested that MC3935 binds to the catalytic pocket of SmLSD1. Western blot analysis revealed that MC3935 inhibited SmLSD1 demethylation activity of H3K4me1/2. Knockdown of SmLSD1 by RNAi recapitulated MC3935 phenotypes in adult worms. RNA-Seq analysis of MC3935-treated parasites revealed significant differences in gene expression related to critical biological processes. Collectively, our findings show that SmLSD1 is a promising drug target for the treatment of schistosomiasis and strongly support the further development and in vivo testing of selective schistosome LSD1 inhibitors.

9.
J Med Chem ; 62(19): 8733-8759, 2019 10 10.
Article in English | MEDLINE | ID: mdl-31496251

ABSTRACT

The only drug currently available for treatment of the neglected disease Schistosomiasis is Praziquantel, and the possible emergence of resistance makes research on novel therapeutic agents necessary and urgent. To this end, the targeting of Schistosoma mansoni epigenetic enzymes, which regulate the parasitic life cycle, emerged as a promising approach. Due to the strong effects of human sirtuin inhibitors on parasite survival and reproduction, Schistosoma sirtuins were postulated as potential therapeutic targets. In vitro testing of synthetic substrates of S. mansoni sirtuin 2 (SmSirt2) and kinetic experiments on a myristoylated peptide demonstrated lysine long-chain deacylation as an intrinsic SmSirt2 activity in addition to its known deacetylase activity for the first time. Focused in vitro screening of the GSK Kinetobox library and structure-activity relationships of identified hits led to the first SmSirt2 inhibitors with activity in the low micromolar range. Several SmSirt2 inhibitors showed potency against both larval schistosomes (viability) and adult worms (pairing, egg laying) in culture without general toxicity to human cancer cells.


Subject(s)
Helminth Proteins/antagonists & inhibitors , Schistosoma mansoni/metabolism , Sirtuin 2/antagonists & inhibitors , Animals , Helminth Proteins/metabolism , Humans , Kinetics , Larva/drug effects , Larva/metabolism , Lysine/chemistry , Niacinamide/chemistry , Niacinamide/metabolism , Niacinamide/pharmacology , Niacinamide/therapeutic use , Oxadiazoles/chemistry , Oxadiazoles/metabolism , Oxadiazoles/pharmacology , Oxadiazoles/therapeutic use , Peptides/chemistry , Peptides/metabolism , Peptides/pharmacology , Peptides/therapeutic use , Pyrimidines/chemistry , Pyrimidines/metabolism , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Schistosoma mansoni/growth & development , Schistosomiasis/drug therapy , Sirtuin 2/metabolism , Structure-Activity Relationship , Substrate Specificity
10.
PLoS Negl Trop Dis ; 12(10): e0006873, 2018 10.
Article in English | MEDLINE | ID: mdl-30365505

ABSTRACT

BACKGROUND: The possibility of emergence of praziquantel-resistant Schistosoma parasites and the lack of other effective drugs demand the discovery of new schistosomicidal agents. In this context the study of compounds that target histone-modifying enzymes is extremely promising. Our aim was to investigate the effect of inhibition of EZH2, a histone methyltransferase that is involved in chromatin remodeling processes and gene expression control; we tested different developmental forms of Schistosoma mansoni using GKS343, a selective inhibitor of EZH2 in human cells. METHODOLOGY/PRINCIPAL FINDINGS: Adult male and female worms and schistosomula were treated with different concentrations of GSK343 for up to two days in vitro. Western blotting showed a decrease in the H3K27me3 histone mark in all three developmental forms. Motility, mortality, pairing and egg laying were employed as schistosomicidal parameters for adult worms. Schistosomula viability was evaluated with propidium iodide staining and ATP quantification. Adult worms showed decreased motility when exposed to GSK343. Also, an approximate 40% reduction of egg laying by GSK343-treated females was observed when compared with controls (0.1% DMSO). Scanning electron microscopy showed the formation of bulges and bubbles throughout the dorsal region of GSK343-treated adult worms. In schistosomula the body was extremely contracted with the presence of numerous folds, and growth was markedly slowed. RNA-seq was applied to identify the metabolic pathways affected by GSK343 sublethal doses. GSK343-treated adult worms showed significantly altered expression of genes related to transmembrane transport, cellular homeostasis and egg development. In females, genes related to DNA replication and noncoding RNA metabolism processes were downregulated. Schistosomula showed altered expression of genes related to cell adhesion and membrane synthesis pathways. CONCLUSIONS/SIGNIFICANCE: The results indicated that GSK343 presents in vitro activities against S. mansoni, and the characterization of EZH2 as a new potential molecular target establishes EZH2 inhibitors as part of a promising new group of compounds that could be used for the development of schistosomicidal agents.


Subject(s)
DNA Replication/drug effects , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Indazoles/pharmacology , Oviposition/drug effects , Pyridones/pharmacology , Schistosoma mansoni/drug effects , Schistosoma mansoni/physiology , Animals , Female , Gene Expression Regulation/drug effects , Locomotion/drug effects , Male , Metabolic Networks and Pathways/drug effects , Microscopy, Electron, Scanning , RNA, Untranslated/metabolism , Schistosoma mansoni/enzymology , Schistosoma mansoni/ultrastructure , Survival Analysis
11.
J Med Chem ; 61(22): 10000-10016, 2018 11 21.
Article in English | MEDLINE | ID: mdl-30347148

ABSTRACT

Metal-dependent histone deacetylases (HDACs) are key epigenetic regulators that represent promising therapeutic targets for the treatment of numerous human diseases. Yet the currently FDA-approved HDAC inhibitors nonspecifically target at least several of the 11 structurally similar but functionally different HDAC isozymes, which hampers their broad usage in clinical settings. Selective inhibitors targeting single HDAC isozymes are being developed, but precise understanding in molecular terms of their selectivity remains sparse. Here, we show that HDAC8-selective inhibitors adopt a L-shaped conformation required for their binding to a HDAC8-specific pocket formed by HDAC8 catalytic tyrosine and HDAC8 L1 and L6 loops. In other HDAC isozymes, a L1-L6 lock sterically prevents L-shaped inhibitor binding. Shielding of the HDAC8-specific pocket by protein engineering decreases potency of HDAC8-selective inhibitors and affects catalytic activity. Collectively, our results unravel key HDAC8 active site structural and functional determinants important for the design of next-generation chemical probes and epigenetic drugs.


Subject(s)
Catalytic Domain , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/chemistry , Repressor Proteins/antagonists & inhibitors , Repressor Proteins/chemistry , Amino Acid Sequence , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/metabolism , Histone Deacetylases/metabolism , Humans , Hydroxamic Acids/chemistry , Hydroxamic Acids/metabolism , Hydroxamic Acids/pharmacology , Indoles/chemistry , Indoles/metabolism , Indoles/pharmacology , Molecular Dynamics Simulation , Repressor Proteins/metabolism , Structure-Activity Relationship , Substrate Specificity , Triazoles/chemistry , Triazoles/metabolism , Triazoles/pharmacology
12.
ChemMedChem ; 13(15): 1517-1529, 2018 08 10.
Article in English | MEDLINE | ID: mdl-29806110

ABSTRACT

Schistosomiasis is a neglected parasitic disease that affects more than 265 million people worldwide and for which the control strategy relies on mass treatment with only one drug: praziquantel. Based on the 3-chlorobenzothiophene-2-hydroxamic acid J1075, a series of hydroxamic acids with different scaffolds were prepared as potential inhibitors of Schistosoma mansoni histone deacetylase 8 (SmHDAC8). The crystal structures of SmHDAC8 with four inhibitors provided insight into the binding mode and orientation of molecules in the binding pocket as well as the orientation of its flexible amino acid residues. The compounds were evaluated in screens for inhibitory activity against schistosome and human HDACs. The most promising compounds were further investigated for their activity toward the major human HDAC isotypes. The most potent inhibitors were additionally screened for lethality against the schistosome larval stage using a fluorescence-based assay. Two of the compounds showed significant, dose-dependent killing of the schistosome larvae and markedly impaired egg laying of adult worm pairs maintained in culture.


Subject(s)
Cinnamates/chemistry , Cinnamates/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/drug effects , Schistosoma mansoni/enzymology , Schistosomiasis/drug therapy , Animals , Cinnamates/chemical synthesis , Cinnamates/therapeutic use , Crystallization , Crystallography, X-Ray , Histone Deacetylases/chemistry , In Vitro Techniques , Molecular Docking Simulation , Protein Conformation , Structure-Activity Relationship
13.
Molecules ; 23(3)2018 Mar 02.
Article in English | MEDLINE | ID: mdl-29498707

ABSTRACT

A promising means in the search of new small molecules for the treatment of schistosomiasis (amongst other parasitic ailments) is by targeting the parasitic epigenome. In the present study, a docking based virtual screening procedure using the crystal structure of histone deacetylase 8 from Schistosoma mansoni (smHDAC8) was designed. From the developed screening protocol, we were able to identify eight novel N-(2,5-dioxopyrrolidin-3-yl)-n-alkylhydroxamate derivatives as smHDAC8 inhibitors with IC50 values ranging from 4.4-20.3 µM against smHDAC8. These newly identified inhibitors were further tested against human histone deacetylases (hsHDAC1, 6 and 8), and were found also to be exerting interesting activity against them. In silico prediction of the docking pose of the compounds was confirmed by the resolved crystal structure of one of the identified hits. This confirmed these compounds were able to chelate the catalytic zinc ion in a bidentate fashion, whilst showing an inverted binding mode of the hydroxamate group when compared to the reported smHDAC8/hydroxamates crystal structures. Therefore, they can be considered as new potential scaffold for the development of new smHDAC8 inhibitors by further investigation of their structure-activity relationship.


Subject(s)
Anthelmintics/chemical synthesis , Chelating Agents/chemical synthesis , Helminth Proteins/antagonists & inhibitors , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylases/chemistry , Hydroxamic Acids/chemical synthesis , Pyrrolidines/chemical synthesis , Schistosoma mansoni/drug effects , Animals , Anthelmintics/pharmacology , Apoptosis/drug effects , Binding Sites , Chelating Agents/pharmacology , Crystallography, X-Ray , Gene Expression , Helminth Proteins/chemistry , Helminth Proteins/genetics , Helminth Proteins/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Hydroxamic Acids/pharmacology , Molecular Docking Simulation , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Pyrrolidines/pharmacology , Schistosoma mansoni/enzymology , Schistosoma mansoni/genetics , Schistosoma mansoni/growth & development , Structure-Activity Relationship , Zinc/chemistry , Zinc/metabolism
14.
PLoS Negl Trop Dis ; 11(11): e0006089, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29155817

ABSTRACT

BACKGROUND: Histone deacetylase 8 from Schistosoma mansoni (SmHDAC8) is essential to parasite growth and development within the mammalian host and is under investigation as a target for the development of selective inhibitors as novel schistosomicidal drugs. Although some protein substrates and protein partners of human HDAC8 have been characterized, notably indicating a role in the function of the cohesin complex, nothing is known of the partners and biological function of SmHDAC8. METHODOLOGY/PRINCIPAL FINDINGS: We therefore employed two strategies to characterize the SmHDAC8 interactome. We first used SmHDAC8 as a bait protein in yeast two-hybrid (Y2H) screening of an S. mansoni cDNA library. This allowed the identification of 49 different sequences encoding proteins. We next performed co-immunoprecipitation (Co-IP) experiments on parasite extracts with an anti-SmHDAC8 antibody. Mass spectrometry (MS) analysis allowed the identification of 160 different proteins. CONCLUSIONS/SIGNIFICANCE: SmHDAC8 partners are involved in about 40 different processes, included expected functions such as the cohesin complex, cytoskeleton organization, transcriptional and translational regulation, metabolism, DNA repair, the cell cycle, protein dephosphorylation, proteolysis, protein transport, but also some proteasome and ribosome components were detected. Our results show that SmHDAC8 is a versatile deacetylase, potentially involved in both cytosolic and nuclear processes.


Subject(s)
Helminth Proteins/metabolism , Histone Deacetylases/metabolism , Schistosoma mansoni/enzymology , Animals , Helminth Proteins/genetics , Histone Deacetylases/genetics , Humans , Immunoprecipitation , Protein Binding , Protein Interaction Maps , Schistosoma mansoni/genetics , Schistosoma mansoni/metabolism , Two-Hybrid System Techniques
15.
Arch Pharm (Weinheim) ; 350(8)2017 Aug.
Article in English | MEDLINE | ID: mdl-28639720

ABSTRACT

Schistosoma mansoni histone deacetylase 8 (SmHDAC8) has been recently identified as a new potential target for the treatment of schistosomiasis. A series of newly designed and synthesized alkoxyamide-based and hydrazide-based HDAC inhibitors were tested for inhibitory activity against SmHDAC8 and human HDACs 1, 6, and 8. The front runner compounds showed submicromolar activity against SmHDAC8 and modest preference for SmHDAC8 over its human orthologue hHDAC8. Docking studies provided insights into the putative binding mode in SmHDAC8 and allowed rationalization of the observed selectivity profile.


Subject(s)
Histone Deacetylase Inhibitors/pharmacology , Phthalic Acids/pharmacology , Repressor Proteins/antagonists & inhibitors , Schistosomicides/pharmacology , Animals , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylases , Humans , Molecular Docking Simulation , Phthalic Acids/chemical synthesis , Phthalic Acids/chemistry , Schistosoma mansoni/enzymology , Schistosomicides/chemical synthesis , Schistosomicides/chemistry , Species Specificity
16.
Trends Parasitol ; 33(8): 581-583, 2017 08.
Article in English | MEDLINE | ID: mdl-28529130

ABSTRACT

In this article, the four coordinators of neglected tropical disease (NTD) drug development projects funded under the European Commission (EC) Framework Programme 7 argue that the EC should reassess their funding strategy to cover the steps necessary to translate a lead compound into a drug candidate for testing in clinical trials, and suggest ways in which this might be achieved.


Subject(s)
Drug Discovery/trends , Neglected Diseases , Public Health/trends , Tropical Medicine , Drug Discovery/economics , Drug Discovery/standards , European Union , Humans , Neglected Diseases/drug therapy , Neglected Diseases/economics , Public Health/economics , Public Health/standards , Tropical Medicine/economics
17.
Infect Genet Evol ; 53: 175-188, 2017 09.
Article in English | MEDLINE | ID: mdl-28506839

ABSTRACT

The availability of the genomic data of diverse parasites provides an opportunity to identify new drug candidates against neglected tropical diseases affecting people worldwide. Histone modifying enzymes (HMEs) are potential candidates since they play key roles in the regulation of chromatin modifications, thus globally regulating gene expression. Furthermore, aberrant epigenetic states are often associated with human diseases, leading to great interest in HMEs as therapeutic targets. Our work focused on two families of protein lysine deacetylases (HDACs and sirtuins). First, we identified potential homologues in the predicted proteomes of selected taxa by using hidden Markov model profiles. Then, we reconstructed the evolutionary relationships of protein sequences by Bayesian inference and maximum likelihood method. In addition, we constructed homology models for five parasite HDACs to provide information for experimental validation and structure-based optimization of inhibitors. Our results showed that parasite genomes code for diverse HDACs and sirtuins. The evolutionary pattern of protein deacetylases with additional experimental data points to these enzymes as common drug targets among parasites. This work has improved the functional annotation of approximately 63% HDACs and 51% sirtuins in the selected taxa providing insights for experimental design. Homology models pointed out structural conservation and differences among parasite and human homologues and highlight potential candidates for further inhibitor development. Some of these parasite proteins are undergoing RNA interference or knockout analyses to validate the function of their corresponding genes. In the future, we will investigate the main functions performed by these proteins, related phenotypes, and their potential as therapeutic targets.


Subject(s)
Anthelmintics/chemistry , Antiprotozoal Agents/chemistry , Genome , Helminth Proteins/chemistry , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylases/chemistry , Protozoan Proteins/chemistry , Animals , Anthelmintics/pharmacology , Antiprotozoal Agents/pharmacology , Databases, Genetic , Epigenesis, Genetic , Evolution, Molecular , Gene Expression , Helminth Proteins/antagonists & inhibitors , Helminth Proteins/genetics , Helminth Proteins/metabolism , Helminthiasis/drug therapy , Helminthiasis/parasitology , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Humans , Leishmania/drug effects , Leishmania/enzymology , Leishmania/genetics , Molecular Docking Simulation , Neglected Diseases , Phylogeny , Plasmodium falciparum/drug effects , Plasmodium falciparum/enzymology , Plasmodium falciparum/genetics , Protein Conformation , Protozoan Infections/drug therapy , Protozoan Infections/parasitology , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Schistosoma/drug effects , Schistosoma/enzymology , Schistosoma/genetics , Structural Homology, Protein , Trypanosoma/drug effects , Trypanosoma/enzymology , Trypanosoma/genetics
18.
Int J Parasitol Drugs Drug Resist ; 7(1): 42-50, 2017 04.
Article in English | MEDLINE | ID: mdl-28107750

ABSTRACT

Malaria, schistosomiasis and leishmaniases are among the most prevalent tropical parasitic diseases and each requires new innovative treatments. Targeting essential parasite pathways, such as those that regulate gene expression and cell cycle progression, is a key strategy for discovering new drug leads. In this study, four clinically approved anti-cancer drugs (Vorinostat, Belinostat, Panobinostat and Romidepsin) that target histone/lysine deacetylase enzymes were examined for in vitro activity against Plasmodium knowlesi, Schistosoma mansoni, Leishmania amazonensis and L. donovani parasites and two for in vivo activity in a mouse malaria model. All four compounds were potent inhibitors of P. knowlesi malaria parasites (IC50 9-370 nM), with belinostat, panobinostat and vorinostat having 8-45 fold selectivity for the parasite over human neonatal foreskin fibroblast (NFF) or human embryonic kidney (HEK 293) cells, while romidepsin was not selective. Each of the HDAC inhibitor drugs caused hyperacetylation of P. knowlesi histone H4. None of the drugs was active against Leishmania amastigote or promastigote parasites (IC50 > 20 µM) or S. mansoni schistosomula (IC50 > 10 µM), however romidepsin inhibited S. mansoni adult worm parings and egg production (IC50 ∼10 µM). Modest in vivo activity was observed in P. berghei infected mice dosed orally with vorinostat or panobinostat (25 mg/kg twice daily for four days), with a significant reduction in parasitemia observed on days 4-7 and 4-10 after infection (P < 0.05), respectively.


Subject(s)
Histone Deacetylase Inhibitors/pharmacology , Leishmania/drug effects , Plasmodium knowlesi/drug effects , Schistosoma mansoni/drug effects , Acetylation , Administration, Oral , Animals , Depsipeptides/pharmacology , HEK293 Cells , Histone Deacetylase Inhibitors/administration & dosage , Histone Deacetylase Inhibitors/therapeutic use , Histone Deacetylases/metabolism , Histones/metabolism , Humans , Hydroxamic Acids/administration & dosage , Hydroxamic Acids/pharmacology , Hydroxamic Acids/therapeutic use , Indoles/administration & dosage , Indoles/pharmacology , Indoles/therapeutic use , Inhibitory Concentration 50 , Leishmania/growth & development , Life Cycle Stages/drug effects , Malaria/drug therapy , Malaria/parasitology , Mice , Panobinostat , Parasitemia/drug therapy , Plasmodium berghei/drug effects , Plasmodium knowlesi/growth & development , Schistosoma mansoni/growth & development , Sulfonamides/pharmacology , Vorinostat
19.
Front Microbiol ; 7: 1682, 2016.
Article in English | MEDLINE | ID: mdl-27822206

ABSTRACT

Ancestral sequence reconstruction has been widely used to test evolution-based hypotheses. The genome of the European tick vector, Ixodes ricinus, encodes for defensin peptides with diverse antimicrobial activities against distantly related pathogens. These pathogens include fungi, Gram-negative, and Gram-positive bacteria, i.e., a wide antimicrobial spectrum. Ticks do not transmit these pathogens, suggesting that these defensins may act against a wide range of microbes encountered by ticks during blood feeding or off-host periods. As demonstrated here, these I. ricinus defensins are also effective against the apicomplexan parasite Plasmodium falciparum. To study the general evolution of antimicrobial activity in tick defensins, the ancestral amino acid sequence of chelicerate defensins, which existed approximately 444 million years ago, was reconstructed using publicly available scorpion and tick defensin sequences (named Scorpions-Ticks Defensins Ancestor, STiDA). The activity of STiDA was tested against P. falciparum and the same Gram-negative and Gram-positive bacteria that were used for the I. ricinus defensins. While some extant tick defensins exhibit a wide antimicrobial spectrum, the ancestral defensin showed moderate activity against one of the tested microbes, P. falciparum. This study suggests that amino acid variability and defensin family expansion increased the antimicrobial spectrum of ancestral tick defensins.

20.
Methods Mol Biol ; 1436: 109-18, 2016.
Article in English | MEDLINE | ID: mdl-27246211

ABSTRACT

Epigenetic mechanisms underlie the morphological transformations and shifts in virulence of eukaryotic pathogens. The targeting of epigenetics-driven cellular programs thus represents an Achilles' heel of human parasites. Today, zinc-dependent histone deacetylases (HDACs) belong to the most explored epigenetic drug targets in eukaryotic parasites. Here, we describe an optimized protocol for the large-scale overproduction and purification of recombinant smHDAC8, an emerging epigenetic drug target in the multicellular human-pathogenic flatworm Schistosoma mansoni. The strategy employs the robustness of recombinant expression in Escherichia coli together with initial purification through a poly-histidine affinity tag that can be removed by the thrombin protease. This protocol is divided into two steps: (1) large-scale production of smHDAC8 in E. coli, and (2) purification of the target smHDAC8 protein through multiple purification steps.


Subject(s)
Histone Deacetylases/genetics , Protein Engineering/methods , Repressor Proteins/genetics , Schistosoma mansoni/genetics , Animals , Epigenesis, Genetic , Escherichia coli/genetics , Escherichia coli/growth & development , Histone Deacetylases/metabolism , Humans , Organisms, Genetically Modified , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Repressor Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...