Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 28(18): 5427-5440, 2022 09.
Article in English | MEDLINE | ID: mdl-35694903

ABSTRACT

Lakes are significant emitters of methane to the atmosphere, and thus are important components of the global methane budget. Methane is typically produced in lake sediments, with the rate of methane production being strongly temperature dependent. Local and regional studies highlight the risk of increasing methane production under future climate change, but a global estimate is not currently available. Here, we project changes in global lake bottom temperatures and sediment methane production rates from 1901 to 2099. By the end of the 21st century, lake bottom temperatures are projected to increase globally, by an average of 0.86-2.60°C under Representative Concentration Pathways (RCPs) 2.6-8.5, with greater warming projected at lower latitudes. This future warming of bottom waters will likely result in an increase in methane production rates of 13%-40% by the end of the century, with many low-latitude lakes experiencing an increase of up to 17 times the historical (1970-1999) global average under RCP 8.5. The projected increase in methane production will likely lead to higher emissions from lakes, although the exact magnitude of the emission increase requires more detailed regional studies.


Subject(s)
Atmosphere , Lakes , Climate Change , Global Warming , Methane , Temperature
2.
Nat Commun ; 12(1): 2318, 2021 04 19.
Article in English | MEDLINE | ID: mdl-33875656

ABSTRACT

One of the most important physical characteristics driving lifecycle events in lakes is stratification. Already subtle variations in the timing of stratification onset and break-up (phenology) are known to have major ecological effects, mainly by determining the availability of light, nutrients, carbon and oxygen to organisms. Despite its ecological importance, historic and future global changes in stratification phenology are unknown. Here, we used a lake-climate model ensemble and long-term observational data, to investigate changes in lake stratification phenology across the Northern Hemisphere from 1901 to 2099. Under the high-greenhouse-gas-emission scenario, stratification will begin 22.0 ± 7.0 days earlier and end 11.3 ± 4.7 days later by the end of this century. It is very likely that this 33.3 ± 11.7 day prolongation in stratification will accelerate lake deoxygenation with subsequent effects on nutrient mineralization and phosphorus release from lake sediments. Further misalignment of lifecycle events, with possible irreversible changes for lake ecosystems, is also likely.

3.
Nature ; 589(7842): 402-407, 2021 01.
Article in English | MEDLINE | ID: mdl-33473224

ABSTRACT

Lake ecosystems, and the organisms that live within them, are vulnerable to temperature change1-5, including the increased occurrence of thermal extremes6. However, very little is known about lake heatwaves-periods of extreme warm lake surface water temperature-and how they may change under global warming. Here we use satellite observations and a numerical model to investigate changes in lake heatwaves for hundreds of lakes worldwide from 1901 to 2099. We show that lake heatwaves will become hotter and longer by the end of the twenty-first century. For the high-greenhouse-gas-emission scenario (Representative Concentration Pathway (RCP) 8.5), the average intensity of lake heatwaves, defined relative to the historical period (1970 to 1999), will increase from 3.7 ± 0.1 to 5.4 ± 0.8 degrees Celsius and their average duration will increase dramatically from 7.7 ± 0.4 to 95.5 ± 35.3 days. In the low-greenhouse-gas-emission RCP 2.6 scenario, heatwave intensity and duration will increase to 4.0 ± 0.2 degrees Celsius and 27.0 ± 7.6 days, respectively. Surface heatwaves are longer-lasting but less intense in deeper lakes (up to 60 metres deep) than in shallower lakes during both historic and future periods. As lakes warm during the twenty-first century7,8, their heatwaves will begin to extend across multiple seasons, with some lakes reaching a permanent heatwave state. Lake heatwaves are likely to exacerbate the adverse effects of long-term warming in lakes and exert widespread influence on their physical structure and chemical properties. Lake heatwaves could alter species composition by pushing aquatic species and ecosystems to the limits of their resilience. This in turn could threaten lake biodiversity9 and the key ecological and economic benefits that lakes provide to society.


Subject(s)
Ecosystem , Extreme Heat , Global Warming/statistics & numerical data , Lakes , Animals , Aquatic Organisms , Extreme Heat/adverse effects , Geographic Mapping , Humans , Seasons
4.
Sci Rep ; 10(1): 20514, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33239702

ABSTRACT

Globally, lake surface water temperatures have warmed rapidly relative to air temperatures, but changes in deepwater temperatures and vertical thermal structure are still largely unknown. We have compiled the most comprehensive data set to date of long-term (1970-2009) summertime vertical temperature profiles in lakes across the world to examine trends and drivers of whole-lake vertical thermal structure. We found significant increases in surface water temperatures across lakes at an average rate of + 0.37 °C decade-1, comparable to changes reported previously for other lakes, and similarly consistent trends of increasing water column stability (+ 0.08 kg m-3 decade-1). In contrast, however, deepwater temperature trends showed little change on average (+ 0.06 °C decade-1), but had high variability across lakes, with trends in individual lakes ranging from - 0.68 °C decade-1 to + 0.65 °C decade-1. The variability in deepwater temperature trends was not explained by trends in either surface water temperatures or thermal stability within lakes, and only 8.4% was explained by lake thermal region or local lake characteristics in a random forest analysis. These findings suggest that external drivers beyond our tested lake characteristics are important in explaining long-term trends in thermal structure, such as local to regional climate patterns or additional external anthropogenic influences.

5.
Sci Rep ; 9(1): 6701, 2019 04 30.
Article in English | MEDLINE | ID: mdl-31040329

ABSTRACT

Damming alters carbon processing along river continua. Estimating carbon transport along rivers intersected by multiple dams requires an understanding of the effects of cascading impoundments on the riverine metabolism. We analyzed patterns of riverine metabolism and phytoplankton biomass (chlorophyll a; Chla) along a 74.4-km river reach intersected by six low-head navigation dams. Calculating gross primary production (GPP) from continuous measurements of dissolved oxygen concentration, we found a maximum increase in the mean GPP by a factor of 3.5 (absolute difference of 0.45 g C m-3 d-1) along the first 26.5 km of the study reach, while Chla increased over the entire reach by a factor of 2.9 (8.7 µg l-1). In the intermittently stratified section of the deepest impoundment the mean GPP between the 1 and 4 m water layer differed by a factor of 1.4 (0.31 g C m-3 d-1). Due to the strong increase in GPP, the river featured a wide range of conditions characteristic of low- to medium-production rivers. We suggest that cascading impoundments have the potential to stimulate riverine GPP, and conclude that phytoplankton CO2 uptake is an important carbon flux in the river Saar, where a considerable amount of organic matter is of autochthonous origin.

6.
Sci Rep ; 7: 43890, 2017 03 06.
Article in English | MEDLINE | ID: mdl-28262715

ABSTRACT

Citizen science projects have a long history in ecological studies. The research usefulness of such projects is dependent on applying simple and standardized methods. Here, we conducted a citizen science project that involved more than 3500 Swedish high school students to examine the temperature difference between surface water and the overlying air (Tw-Ta) as a proxy for sensible heat flux (QH). If QH is directed upward, corresponding to positive Tw-Ta, it can enhance CO2 and CH4 emissions from inland waters, thereby contributing to increased greenhouse gas concentrations in the atmosphere. The students found mostly negative Tw-Ta across small ponds, lakes, streams/rivers and the sea shore (i.e. downward QH), with Tw-Ta becoming increasingly negative with increasing Ta. Further examination of Tw-Ta using high-frequency temperature data from inland waters across the globe confirmed that Tw-Ta is linearly related to Ta. Using the longest available high-frequency temperature time series from Lake Erken, Sweden, we found a rapid increase in the occasions of negative Tw-Ta with increasing annual mean Ta since 1989. From these results, we can expect that ongoing and projected global warming will result in increasingly negative Tw-Ta, thereby reducing CO2 and CH4 transfer velocities from inland waters into the atmosphere.

7.
Ecol Lett ; 20(1): 98-111, 2017 01.
Article in English | MEDLINE | ID: mdl-27889953

ABSTRACT

Winter conditions are rapidly changing in temperate ecosystems, particularly for those that experience periods of snow and ice cover. Relatively little is known of winter ecology in these systems, due to a historical research focus on summer 'growing seasons'. We executed the first global quantitative synthesis on under-ice lake ecology, including 36 abiotic and biotic variables from 42 research groups and 101 lakes, examining seasonal differences and connections as well as how seasonal differences vary with geophysical factors. Plankton were more abundant under ice than expected; mean winter values were 43.2% of summer values for chlorophyll a, 15.8% of summer phytoplankton biovolume and 25.3% of summer zooplankton density. Dissolved nitrogen concentrations were typically higher during winter, and these differences were exaggerated in smaller lakes. Lake size also influenced winter-summer patterns for dissolved organic carbon (DOC), with higher winter DOC in smaller lakes. At coarse levels of taxonomic aggregation, phytoplankton and zooplankton community composition showed few systematic differences between seasons, although literature suggests that seasonal differences are frequently lake-specific, species-specific, or occur at the level of functional group. Within the subset of lakes that had longer time series, winter influenced the subsequent summer for some nutrient variables and zooplankton biomass.


Subject(s)
Ecosystem , Ice Cover , Lakes , Plankton/physiology , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...