Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
Plants (Basel) ; 13(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732455

ABSTRACT

Soil-borne Trichoderma spp. have been extensively studied for their biocontrol activities against pathogens and growth promotion ability in plants. However, the beneficial effect of Trichoderma on inducing resistance against insect herbivores has been underexplored. Among diverse Trichoderma species, consistent with previous reports, we showed that root colonization by T. virens triggered induced systemic resistance (ISR) to the leaf-infecting hemibiotrophic fungal pathogens Colletotrichum graminicola. Whether T. virens induces ISR to insect pests has not been tested before. In this study, we investigated whether T. virens affects jasmonic acid (JA) biosynthesis and defense against fall armyworm (FAW) and western corn rootworm (WCR). Unexpectedly, the results showed that T. virens colonization of maize seedlings grown in autoclaved soil suppressed wound-induced production of JA, resulting in reduced resistance to FAW. Similarly, the bacterial endophyte Pseudomonas chlororaphis 30-84 was found to suppress systemic resistance to FAW due to reduced JA. Further comparative analyses of the systemic effects of these endophytes when applied in sterile or non-sterile field soil showed that both T. virens and P. chlororaphis 30-84 triggered ISR against C. graminicola in both soil conditions, but only suppressed JA production and resistance to FAW in sterile soil, while no significant impact was observed when applied in non-sterile soil. In contrast to the effect on FAW defense, T. virens colonization of maize roots suppressed WCR larvae survival and weight gain. This is the first report suggesting the potential role of T. virens as a biocontrol agent against WCR.

2.
J Pharm Biomed Anal ; 239: 115863, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38056285

ABSTRACT

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging has been used to study the hydrolysis of tenofovir disoproxil fumarate (TDF) to tenofovir monosoproxil (TM) within an oral compressed tablet. The ToF-SIMS images displayed a heterogenous distribution of the matrix components. Evaluation of the TM distribution revealed that it was primarily co-localized with areas of higher excipient concentration pointing toward excipient driven degradation. To support these observations, a compatibility study of TDF with each tablet component was performed via liquid chromatography. The ToF-SIMS imaging and compatibility study indicated that the excipient, Avicel® PH-102, was the primary driver of TM formation in the tablet. The hydrolysis degradation mechanism within the tablet is further rationalized through discussion of chemical and physical properties of the matrix components. The sum of this work demonstrates a new analytical workflow for probing and understanding matrix driven degradation in oral compressed tablets utilizing ToF-SIMS imaging.


Subject(s)
Anti-HIV Agents , HIV Infections , Humans , Tenofovir/therapeutic use , Anti-HIV Agents/therapeutic use , Excipients/chemistry , Spectrometry, Mass, Secondary Ion , Tablets/chemistry , HIV Infections/drug therapy
3.
Acad Med ; 99(2): 164-168, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37881940

ABSTRACT

PROBLEM: Within health science disciplines, power dynamics exist that can not only perpetuate harm but also foster feelings of powerlessness and disengagement. Although diversity, equity, and inclusion approaches have been prioritized by many institutions to improve student and staff recruitment, few effective structures exist to promote the retention, support, and inclusion of these individuals. APPROACH: Restorative justice circles facilitate a collaborative and personal exercise that welcomes the input of all members, thus acting as a catalyst toward broader and more deeply rooted culture changes and conflict resolution. Restorative justice circles can be applied to strengthen academic learning environments by building community and creating intentional dialog spaces to promote accountability and belonging. The Phoenix Gender-based Violence Lab is an interdisciplinary health research lab composed of diverse researchers who meet monthly for a restorative justice-inspired community-building circle and discussion. The lab members participated in community-building circles from August 2021 to August 2022 during which circle facilitators aimed to prioritize safety, trustworthiness, and transparency and provide collaboration opportunities. OUTCOMES: All 10 research team members consented to an anonymous evaluation survey to share their perspectives about incorporating this approach into lab time. Research team members expressed many benefits of circle discussions, including mitigated power dynamics (n = 5), increased lab cohesion (n = 9), improved research processes (n = 6), and enhanced honesty and accountability (n = 4). NEXT STEPS: Circle practice has shown promising results within the Phoenix Gender-based Violence Lab, indicating that other academic and medical settings should consider its potential to enhance group dynamics, foster accountability, and cultivate deeper collaboration and appreciation among group members. Further investigation of circle practice in diverse medical and academic settings is needed to fully comprehend the range of outcomes resulting from this intervention and whether they align with the fundamental principles of restorative justice.


Subject(s)
Academia , Humans , Research
4.
Pharm Res ; 39(10): 2529-2540, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36131113

ABSTRACT

PURPOSE: Oxidation is one of the most common degradation pathways for active pharmaceutical ingredients (APIs) in pharmaceutical formulations, mostly involving 1-electron processes via peroxy radicals and 2-electron processes by peroxides. In liquid pharmaceutical formulations, several factors can impact oxidative instabilities including pH, excipient impurities, headspace oxygen, and the potential for photo-oxidation. Photo-oxidation can be particularly challenging to characterize given the number of oxidative mechanisms which can occur. This was observed during formulation development of a new chemical entity, MK-1454, where a degradation peak was observed during photostability studies which was not previously observed during peroxide and peroxyradical forced stress studies. METHODS: To gain a fundamental understanding of reactive oxygen species generation and its role in degradation of MK-1454, experiments were performed with materials which either generate or measure reactive oxygen species including organic hydroperoxides, singlet oxygen, and superoxide to fundamentally understand a photodegradation mechanism which was observed in the original formulation. LC-MS experiments further elucidated the structure and mechanism of this observed degradation pathway. RESULTS: A clear relationship between the decrease in dissolved oxygen after light exposure and the loss of MK-1454 was established. The data indicate that singlet oxygen is the most likely contributor of a particular photodegradation product. The singlet oxygen was generated by the inactive ingredients in the formulation, and LC-MS confirm this as the most likely pathway. CONCLUSION: This work highlights the importance of understanding photochemical degradation of APIs in solution formulations and provides approaches which can better elucidate those mechanisms and thereby control strategies.


Subject(s)
Excipients , Singlet Oxygen , Drug Compounding , Excipients/chemistry , Oxidation-Reduction , Oxygen/chemistry , Peroxides , Reactive Oxygen Species , Singlet Oxygen/chemistry , Singlet Oxygen/metabolism , Superoxides
5.
Front Microbiol ; 13: 843092, 2022.
Article in English | MEDLINE | ID: mdl-35464916

ABSTRACT

Rhizosphere colonizing plant growth promoting bacteria (PGPB) increase their competitiveness by producing diffusible toxic secondary metabolites, which inhibit competitors and deter predators. Many PGPB also have one or more Type VI Secretion System (T6SS), for the delivery of weapons directly into prokaryotic and eukaryotic cells. Studied predominantly in human and plant pathogens as a virulence mechanism for the delivery of effector proteins, the function of T6SS for PGPB in the rhizosphere niche is poorly understood. We utilized a collection of Pseudomonas chlororaphis 30-84 mutants deficient in one or both of its two T6SS and/or secondary metabolite production to examine the relative importance of each T6SS in rhizosphere competence, bacterial competition, and protection from bacterivores. A mutant deficient in both T6SS was less persistent than wild type in the rhizosphere. Both T6SS contributed to competitiveness against other PGPB or plant pathogenic strains not affected by secondary metabolite production, but only T6SS-2 was effective against strains lacking their own T6SS. Having at least one T6SS was also essential for protection from predation by several eukaryotic bacterivores. In contrast to diffusible weapons that may not be produced at low cell density, T6SS afford rhizobacteria an additional, more immediate line of defense against competitors and predators.

7.
Front Microbiol ; 11: 560124, 2020.
Article in English | MEDLINE | ID: mdl-33244313

ABSTRACT

LuxR solos are common in plant-associated bacteria and increasingly recognized for playing important roles in plant-microbe interkingdom signaling. Unlike the LuxR-type transcriptional regulators of prototype LuxR/LuxI quorum sensing systems, luxR solos do not have a LuxI-type autoinducer synthase gene associated with them. LuxR solos in plant-pathogenic bacteria are important for virulence and in plant endosymbionts contribute to symbiosis. In the present study, we characterized an atypical LuxR solo, PcsR2, in the biological control species Pseudomonas chlororaphis 30-84 that is highly conserved among sequenced P. chlororaphis strains. Unlike most LuxR solos in the plant-associated bacteria characterized to date, pcsR2 is not associated with a proline iminopeptidase gene and the protein has an atypical N-terminal binding domain. We created a pcsR2 deletion mutant and used quantitative RT-PCR to show that the expression of pcsR2 and genes in the operon immediately downstream was upregulated ∼10-fold when the wild type strain was grown on wheat roots compared to planktonic culture. PcsR2 was involved in upregulation. Using a GFP transcriptional reporter, we found that expression of pcsR2 responded specifically to root-derived substrates as compared to leaf-derived substrates but not to endogenous AHLs. Compared to the wild type, the mutant was impaired in the ability to utilize root carbon and nitrogen sources in wheat root macerate and to colonize wheat roots. Phenazine production and most biofilm traits previously shown to be correlated with phenazine production also were diminished in the mutant. Gene expression of several of the proteins in the phenazine regulatory network including PhzR, Pip (phenazine inducing protein) and RpeA/RpeB were reduced in the mutant, and overexpression of these genes in trans restored phenazine production in the mutant to wild-type levels, indicating PcsR2 affects the activity of the these regulatory genes upstream of RpeA/RpeB via an undetermined mechanism. Our results indicate PcsR2 upregulates the expression of the adjacent operon in response to unknown wheat root-derived signals and belongs to a novel subfamily of LuxR-type transcriptional regulators found in sequenced P. chlororaphis strains.

8.
Front Plant Sci ; 11: 575314, 2020.
Article in English | MEDLINE | ID: mdl-33133116

ABSTRACT

Application of plant growth promoting bacteria may induce plant salt stress tolerance, however the underpinning microbial and plant mechanisms remain poorly understood. In the present study, the specific role of phenazine production by rhizosphere-colonizing Pseudomonas in mediating the inhibitory effects of salinity on wheat seed germination and seedling growth in four different varieties was investigated using Pseudomonas chlororaphis 30-84 (wild type) and isogenic derivatives deficient or enhanced in phenazine production. The results showed that varieties differed in how they responded to the salt stress treatment and the benefits derived from colonization by P. chlororaphis 30-84. In all varieties, the salt stress treatment significantly reduced seed germination, and in seedlings, reduced relative water content, increased reactive oxygen species (ROS) levels in leaves, and in three of four varieties, reduced shoot and root production compared to the no salt stress treatment. Inoculation of seeds with Pseudomonas chlororaphis 30-84 wild type or derivatives promoted salt-stress tolerance in seedlings of the four commercial winter wheat varieties tested, but the salt-stress tolerance phenotype was not entirely due to phenazine production. For example, all P. chlororaphis derivatives (including the phenazine-producing mutant) significantly improved relative water content in two varieties, Iba and CV 1, for which the salt stress treatment had a large impact. Importantly, all P. chlororaphis derivatives enabled the salt inhibited wheat varieties studied to maintain above ground productivity in saline conditions. However, only phenazine-producing derivatives enhanced the shoot or root growth of seedlings of all varieties under nonsaline conditions. Notably, ROS accumulation was reduced, and antioxidant enzyme (catalase) activity enhanced in the leaves of seedlings grown in saline conditions that were seed-treated with phenazine-producing P. chlororaphis derivatives as compared to noninoculated seedlings. The results demonstrate the capacity of P. chlororaphis to improve salt tolerance in wheat seedlings by promoting plant growth and reducing osmotic stress and a role for bacterial phenazine production in reducing redox stress.

9.
Pharm Res ; 37(6): 107, 2020 May 27.
Article in English | MEDLINE | ID: mdl-32462273

ABSTRACT

PURPOSE: Desorption electrospray ionization mass spectrometry imaging (DESI-MSI) coupled with gas-phase ion mobility spectrometry was used to characterize the drug distribution in polymeric implants before and after exposure to accelerated in vitro release (IVR) media. DESI-MSI provides definitive chemical identification and localization of formulation components, including 2D chemical mapping of individual components with essentially no sample preparation. METHODS: Polymeric implants containing 40% (w/w) entecavir and poly(D,L-lactide) (PLA) were prepared and then exposed to either acidified PBS (pH 2.5) or MeOH:H2O (50:50, v/v) medias during a 7-day IVR test using continuous flow-through (CFT) cell dissolution. The amount of drug released from the polymer matrix during the 7-day IVR test was monitored by online-ultraviolet spectroscopy (UV) and HPLC-UV. After that period, intact implants and radial sections of implants were analyzed by DESI-MSI with ion mobility spectrometry. The active ingredient along with impurities and contaminants were used to generate chemical maps before and after exposure to the release medias. RESULTS: Bi-phasic release profiles were observed for implants during IVR release using both medias. During the second phase of release, implants exposed to PBS, pH 2.5, released the entecavir faster than the implants exposed to MeOH:H2O (50:50, v/v). Radial images of the polymer interior show that entecavir is localized along the central core of the implant after exposure to MeOH:H2O (50:50, v/v) and that the drug is more uniformly distributed throughout the implant after exposure to acidified PBS (pH 2.5). CONCLUSIONS: DESI-MSI coupled with ion mobility analysis produced chemical images of the drug distribution on the exterior and interior of cylindrical polymeric implants before and after exposure to various release medias. These results demonstrated the utility of this technique for rapid characterization of drug and impurity/degradant distribution within polymeric implants with direct implications for formulation development as well as analytical method development activities for various solid parenteral and oral dosage forms. These results are especially meaningful since samples were analyzed with essentially no preparative procedures.


Subject(s)
Chemistry, Pharmaceutical/methods , Drug Implants/chemistry , Drug Liberation , Polymers/chemistry , Spectrometry, Mass, Electrospray Ionization , Drug Implants/pharmacokinetics
10.
PLoS One ; 14(12): e0225933, 2019.
Article in English | MEDLINE | ID: mdl-31800619

ABSTRACT

Host-mediated microbiome engineering (HMME) is a strategy that utilizes the host phenotype to indirectly select microbiomes though cyclic differentiation and propagation. In this experiment, the host phenotype of delayed onset of seedling water deficit stress symptoms was used to infer beneficial microbiome-host interactions over multiple generations. By utilizing a host-centric selection approach, microbiota are selected at a community level, therein using artificial selection to alter microbiomes through both ecological and evolutionary processes. After six rounds of artificial selection using host-mediated microbiome engineering (HMME), a microbial community was selected that mediated a 5-day delay in the onset of drought symptoms in wheat seedlings. Seedlings grown in potting medium inoculated with the engineered rhizosphere from the 6th round of HMME produced significantly more biomass and root system length, dry weight, and surface area than plants grown in medium similarly mixed with autoclaved inoculum (negative control). The effect on plant water stress tolerance conferred by the inoculum was transferable at subsequent 10-fold and 100-fold dilutions in fresh non-autoclaved medium but was lost at 1000-fold dilution and was completely abolished by autoclaving, indicating the plant phenotype is mediated by microbial population dynamics. The results from 16S rRNA amplicon sequencing of the rhizosphere microbiomes at rounds 0, 3, and 6 revealed taxonomic increases in proteobacteria at the phylum level and betaproteobacteria at the class level. There were significant decreases in alpha diversity in round 6, divergence in speciation with beta diversity between round 0 and 6, and changes in overall community composition. This study demonstrates the potential of using the host as a selective marker to engineer microbiomes that mediate changes in the rhizosphere environment that improve plant adaptation to drought stress.


Subject(s)
Adaptation, Biological , Droughts , Microbiota , Rhizosphere , Soil Microbiology , Stress, Physiological , Triticum/physiology , Analysis of Variance , Phenotype , Phylogeny , Plant Roots/microbiology , Seedlings , Triticum/classification
11.
Plants (Basel) ; 8(11)2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31731657

ABSTRACT

Disease caused by the bacterial pathogen "Candidatus Liberibacter solanacearum" (Lso) represents a serious threat to solanaceous crop production. Insecticide applications to control the psyllid vector, Bactericera cockerelli Sulc (Hemiptera: Triozidae) has led to the emergence of resistance in psyllids populations. Efforts to select natural resistant cultivars have been marginally successful and have been complicated by the presence of distinct Lso haplotypes (LsoA, LsoB) differing in symptoms severity on potato and tomato. A potentially promising management tool is to boost host resistance to the pathogen and/or the insect vector by promoting mycorrhization. Here we tested the hypothesis that mycorrhizal fungi can mitigate the effect of Lso infection on tomato plants. The presence of mycorrhizal fungi substantially delayed and reduced the incidence of Lso-induced symptoms on tomato as compared to non-mycorrhized plants. However, PCR with specific Lso primers revealed that mycorrhization did not prevent Lso transmission or translocation to newly formed leaves. Mycorrhization significantly reduced oviposition by psyllids harboring LsoA and survival of nymphs from these eggs. However, mycorrhization had no effect on oviposition by psyllids harboring LsoB or the survival of nymphs from parents harboring LsoB. These findings indicate the use of mycorrhizal fungi is a promising strategy for the mitigation of disease caused by both LsoA and LsoB and warrants additional field testing.

12.
Front Microbiol ; 10: 2106, 2019.
Article in English | MEDLINE | ID: mdl-31552009

ABSTRACT

This study reports the application of a novel bioprospecting procedure designed to screen plant growth-promoting rhizobacteria (PGPR) capable of rapidly colonizing the rhizosphere and mitigating drought stress in multiple hosts. Two PGPR strains were isolated by this bioprospecting screening assay and identified as Bacillus sp. (12D6) and Enterobacter sp. (16i). When inoculated into the rhizospheres of wheat (Triticum aestivum) and maize (Zea mays) seedlings, these PGPR resulted in delays in the onset of plant drought symptoms. The plant phenotype responding to drought stress was associated with alterations in root system architecture. In wheat, both PGPR isolates significantly increased root branching, and Bacillus sp. (12D6), in particular, increased root length, when compared to the control. In maize, both PGPR isolates significantly increased root length, root surface area and number of tips when compared to the control. Enterobacter sp. (16i) exhibited greater effects in root length, diameter and branching when compared to Bacillus sp. (12D6) or the control. In vitro phytohormone profiling of PGPR pellets and filtrates using LC/MS demonstrated that both PGPR strains produced and excreted indole-3-acetic acid (IAA) and salicylic acid (SA) when compared to other phytohormones. The positive effects of PGPR inoculation occurred concurrently with the onset of water deficit, demonstrating the potential of the PGPR identified from this bioprospecting pipeline for use in crop production systems under drought stress.

13.
Front Microbiol ; 10: 1590, 2019.
Article in English | MEDLINE | ID: mdl-31354678

ABSTRACT

The specific role of phenazines produced by rhizosphere-colonizing Pseudomonas in mediating wheat seedling drought-stress tolerance and recovery from water deficit was investigated using Pseudomonas chlororaphis 30-84 and isogenic derivatives deficient or enhanced in phenazine production compared to wild type. Following a 7-day water deficit, seedlings that received no-inoculum or were colonized by the phenazine mutant wilted to collapse, whereas seedlings colonized by phenazine producers displayed less severe symptoms. After a 7-day recovery period, survival of seedlings colonized by phenazine-producing strains exceeded 80%, but was less than 60% for no-inoculum controls. A second 7-day water deficit reduced overall survival rates to less than 10% for no-inoculum control seedlings, whereas survival was ∼50% for seedlings colonized by phenazine-producers. The relative water content of seedlings colonized by phenazine-producers was 10-20% greater than for the no-inoculum controls at every stage of water deficit and recovery, resulting in higher recovery indices than observed for the no-inoculum controls. For 10-day water deficits causing the collapse of all seedlings, survival rates remained high for plants colonized by phenazine-producers, especially the enhanced phenazine producer (∼74%), relative to the no-inoculum control (∼25%). These observations indicate that seedlings colonized by the phenazine-producing strains suffered less from dehydration during water deficit and recovered better, potentially contributing to better resilience from a second drought/recovery cycle. Seedlings colonized by phenazine-producing strains invested more in root systems and produced 1.5 to 2 fold more root tips than seedlings colonized by the phenazine mutant or the no-inoculum controls when grown with or without water deficit. The results suggest that the presence of phenazine-producing bacteria in the rhizosphere provides wheat seedlings with a longer adjustment period resulting in greater drought-stress avoidance and resilience.

14.
Article in English | MEDLINE | ID: mdl-30533624

ABSTRACT

Erwinia dacicola is a dominant endosymbiont of the pestiferous olive fly. Its genome is similar in size and GC content to those of free-living Erwinia species, including the plant pathogen Erwinia amylovora. The E. dacicola genome encodes the metabolic capability to supplement and detoxify the olive fly's diet in larval and adult stages.

15.
Article in English | MEDLINE | ID: mdl-30533936

ABSTRACT

Enterobacter sp. strain OLF colonizes laboratory-reared and wild individuals of the olive fruit fly Bactrocera oleae. The 5.07-kbp genome sequence of Enterobacter sp. strain OLF encodes metabolic pathways that allow the bacterium to partially supplement the diet of the olive fly when its dominant endosymbiont, Erwinia dacicola, is absent.

16.
Sci Rep ; 8(1): 15936, 2018 10 29.
Article in English | MEDLINE | ID: mdl-30374192

ABSTRACT

The pestivorous tephritid olive fly has long been known as a frequent host of the obligately host-associated bacterial endosymbiont, Erwinia dacicola, as well as other facultative endosymbionts. The genomes of Erwinia dacicola and Enterobacter sp. OLF, isolated from a California olive fly, encode the ability to supplement amino acids and vitamins missing from the olive fruit on which the larvae feed. The Enterobacter sp. OLF genome encodes both uricase and ureases, and the Er. dacicola genome encodes an allantoate transport pathway, suggesting that bird feces or recycling the fly's waste products may be important sources of nitrogen. No homologs to known nitrogenases were identified in either bacterial genome, despite suggestions of their presence from experiments with antibiotic-treated flies. Comparisons between the olive fly endosymbionts and their free-living relatives revealed similar GC composition and genome size. The Er. dacicola genome has fewer genes for amino acid metabolism, cell motility, and carbohydrate transport and metabolism than free-living Erwinia spp. while having more genes for cell division, nucleotide metabolism and replication as well as mobile elements. A 6,696 bp potential lateral gene transfer composed primarily of amino acid synthesis and transport genes was identified that is also observed in Pseudomonas savastanoii pv savastanoii, the causative agent of olive knot disease.


Subject(s)
Enterobacter/genetics , Erwinia/genetics , Genome, Bacterial , Genomics/methods , Base Composition , Nitrogen/metabolism , Olea/microbiology , RNA, Ribosomal, 16S/chemistry , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Sequence Analysis, DNA , Symbiosis
17.
Appl Environ Microbiol ; 84(18)2018 09 15.
Article in English | MEDLINE | ID: mdl-30030224

ABSTRACT

R-tailocins are high-molecular-weight bacteriocins resembling bacteriophage tails. Pseudomonas chlororaphis 30-84 is a plant growth-promoting rhizobacterial (PGPR) strain that produces two distinct R-tailocin particles with different killing spectra. The two R-tailocins have different evolutionary histories but are released by the same lysis cassette. A previous study showed that both tailocins are important for pairwise competition with susceptible rhizosphere-colonizing strains; however, the broader role of tailocins in competition with the native rhizosphere microbiome was not tested. Genomic analysis of the P. chlororaphis 30-84 R-tailocin gene cluster uncovered the presence of three tail fiber genes in the tailocin 2 genetic module that could potentially result in tailocin 2 particles having different tail fibers and thus a wider killing spectrum. In this study, the tail fibers were found to incorporate onto different tailocin 2 particles, each with a distinct killing spectrum. A loss of production of one or both tailocins resulted in decreased P. chlororaphis 30-84 persistence within the wheat rhizosphere when in competition with the native microflora but not bulk soil. The capacity to produce three different versions of a single tailocin, each having one of three different types of tail fibers, is a previously unreported mechanism that leads to a broader R-tailocin killing spectrum. This study also provides evidence for the function of R-tailocins in competition with rhizosphere microbiome communities but not in bulk soil.IMPORTANCE Although R-tailocin gene clusters typically encode one tail fiber protein, three tail fiber-resembling genes were identified in association with one of the two sets of R-tailocin genes within the tailocin cluster of P. chlororaphis 30-84 and other sequenced P. chlororaphis strain genomes. This study confirmed that P. chlororaphis 30-84 not only produces two distinct tailocins, but that one of them is produced with three different types of tail fibers. This is a previously unreported strategy to increase the breadth of strains targeted by an R-tailocin. Our finding that R-tailocins produced by a PGPR Pseudomonas strain enhanced its persistence within the wheat rhizosphere microbiome confirms that R-tailocin production contributes to the population dynamics of rhizobacterial communities.


Subject(s)
Antibiosis , Bacteriocins/genetics , Pseudomonas chlororaphis/genetics , Rhizosphere , Bacteriocins/metabolism , Multigene Family , Pseudomonas chlororaphis/metabolism
18.
J Am Chem Soc ; 140(17): 5784-5790, 2018 05 02.
Article in English | MEDLINE | ID: mdl-29672035

ABSTRACT

For a three-dimensional structure to spontaneously self-assemble from many identical components, the steps on the pathway must be kinetically accessible. Many virus capsids are icosahedral and assembled from hundreds of identical proteins, but how they navigate the assembly process is poorly understood. Capsid assembly is thought to involve stepwise addition of subunits to a growing capsid fragment. Coarse-grained models suggest that the reaction occurs on a downhill energy landscape, so intermediates are expected to be fleeting. In this work, charge detection mass spectrometry (CDMS) has been used to track assembly of the hepatitis B virus (HBV) capsid in real time. The icosahedral T = 4 capsid of HBV is assembled from 120 capsid protein dimers. Our results indicate that there are multiple pathways for assembly. Under conditions that favor a modest association energy there is no accumulation of large intermediates, which indicates that available pathways include ones on a downhill energy surface. Under higher salt conditions, where subunit interactions are strengthened, around half of the products of the initial assembly reaction have masses close to the T = 4 capsid and the other half are stalled intermediates which emerge abruptly at around 90 dimers, indicating a bifurcation in the ensemble of assembly paths. When incubated at room temperature, the 90-dimer intermediates accumulate dimers and gradually shift to higher mass and merge with the capsid peak. Though free subunits are present in solution, the stalled intermediates indicate the presence of a local minima on the energy landscape. Some intermediates may result from hole closure, where the growing capsid distorts to close the hole due to the missing capsid proteins or from a species where subsequent additions are particularly labile.


Subject(s)
Capsid/chemistry , Capsid/metabolism , Hepatitis B virus/chemistry , Hepatitis B virus/metabolism , Kinetics , Mass Spectrometry
19.
Front Microbiol ; 9: 185, 2018.
Article in English | MEDLINE | ID: mdl-29487582

ABSTRACT

Application of Brassicaceous seed meal (BSM) is a promising biologically based disease-control practice but BSM could directly and indirectly also affect the non-target bacterial communities, including the beneficial populations. Understanding the bacterial response to BSM at the community level is of great significance for directing plant disease management through the manipulation of resident bacterial communities. Fusarium wilt is a devastating disease on pepper. However, little is known about the response of bacterial communities, especially the rhizosphere bacterial community, to BSM application to soil heavily infested with Fusarium wilt pathogen and cropped with peppers. In this study, a 25-day microcosm incubation of a natural Fusarium wilt pathogen-infested soil supplemented with three BSMs, i.e., Camelina sativa 'Crantz' (CAME), Brassica juncea 'Pacific Gold' (PG), and a mixture of PG and Sinapis alba cv. 'IdaGold' (IG) (PG+IG, 1:1 ratio), was performed. Then, a further 35-day pot experiment was established with pepper plants growing in the BSM treated soils. The changes in the bacterial community in the soil after 25 days of incubation and changes in the rhizosphere after an additional 35 days of pepper growth were investigated by 454 pyrosequencing technique. The results show that the application of PG and PG+IG reduced the disease index by 100% and 72.8%, respectively, after 35 days of pepper growth, while the application of CAME did not have an evident suppressive effect. All BSM treatments altered the bacterial community structure and decreased the bacterial richness and diversity after 25 days of incubation, although this effect was weakened after an additional 35 days of pepper growth. At the phylum/class and the genus levels, the changes in specific bacterial populations resulting from the PG and PG+IG treatments, especially the significant increase in Actinobacteria-affiliated Streptomyces and an unclassified genus and the significant decrease in Chloroflexi, were suspected to be one of the microbial mechanisms involved in PG-containing BSM-induced disease suppression. This study is helpful for our understanding of the mechanisms that lead to contrasting plant disease severity after the addition of different BSMs.

20.
Plant Pathol J ; 34(1): 44-58, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29422787

ABSTRACT

Pseudomonas chlororaphis 30-84 is a biological control agent selected for its ability to suppress diseases caused by fungal pathogens. P. chlororaphis 30-84 produces three phenazines: phenazine-1-carboxylic acid (PCA), 2-hydroxy-phenazine-1-carboxylic acid (2OHPCA) and a small amount of 2-hydroxy-phenazine (2OHPHZ), and these are required for fungal pathogen inhibition and wheat rhizosphere competence. The two, 2-hydroxy derivatives are produced from PCA via the activity of a phenazine-modifying enzyme encoded by phzO. In addition to the seven biosynthetic genes responsible for the production of PCA, many other Pseudomonas strains possess one or more modifying genes, which encode enzymes that act independently or together to convert PCA into other phenazine derivatives. In order to understand the fitness effects of producing different phenazines, we constructed isogenic derivatives of P. chlororaphis 30-84 that differed only in the type of phenazines produced. Altering the type of phenazines produced by P. chlororaphis 30-84 enhanced the spectrum of fungal pathogens inhibited and altered the degree of take-all disease suppression. These strains also differed in their ability to promote extracellular DNA release, which may contribute to the observed differences in the amount of biofilm produced. All derivatives were equally important for survival over repeated plant/harvest cycles, indicating that the type of phenazines produced is less important for persistence in the wheat rhizosphere than whether or not cells produce phenazines. These findings provide a better understanding of the effects of different phenazines on functions important for biological control activity with implications for applications that rely on introduced or native phenazine producing populations.

SELECTION OF CITATIONS
SEARCH DETAIL
...