Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Eur J Med Chem ; 243: 114703, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36067700

ABSTRACT

The CCL20/CCR6 axis is implicated in the migration of CCR6+ immune cells towards CCL20, its sole ligand, whose expression is increased during inflammatory processes and is known to play a pivotal role in triggering different autoimmune-mediated inflammatory diseases. Herein, we report a drug discovery effort focused on the development of a new pharmacological approach for the treatment of inflammatory bowel diseases (IBDs) based on small-molecule CCR6 antagonists. The most promising compound 1b was identified by combining in silico studies, sustainable chemistry and in vitro functional/targeted assays, and its efficacy was finally validated in a classic murine model of colitis (TNBS-induced) and in a model of peritonitis (zymosan-induced). These data provide the proof of principle that a pharmacological modulation of the CCL20/CCR6 axis may indeed represent the first step for the development of an orally bioavailable drug candidate for the treatment of IBD and, potentially, other diseases regulated by the CCL20/CCR6 axis.


Subject(s)
Autoimmune Diseases , Inflammatory Bowel Diseases , Mice , Humans , Animals , Receptors, CCR6/metabolism , Chemokine CCL20/metabolism , Inflammatory Bowel Diseases/drug therapy
2.
Cell ; 171(1): 103-119.e18, 2017 Sep 21.
Article in English | MEDLINE | ID: mdl-28938112

ABSTRACT

It is now established that Bcl11b specifies T cell fate. Here, we show that in developing T cells, the Bcl11b enhancer repositioned from the lamina to the nuclear interior. Our search for factors that relocalized the Bcl11b enhancer identified a non-coding RNA named ThymoD (thymocyte differentiation factor). ThymoD-deficient mice displayed a block at the onset of T cell development and developed lymphoid malignancies. We found that ThymoD transcription promoted demethylation at CTCF bound sites and activated cohesin-dependent looping to reposition the Bcl11b enhancer from the lamina to the nuclear interior and to juxtapose the Bcl11b enhancer and promoter into a single-loop domain. These large-scale changes in nuclear architecture were associated with the deposition of activating epigenetic marks across the loop domain, plausibly facilitating phase separation. These data indicate how, during developmental progression and tumor suppression, non-coding transcription orchestrates chromatin folding and compartmentalization to direct with high precision enhancer-promoter communication.


Subject(s)
Enhancer Elements, Genetic , Promoter Regions, Genetic , RNA, Untranslated/genetics , Repressor Proteins/genetics , T-Lymphocytes/cytology , Tumor Suppressor Proteins/genetics , Animals , CCCTC-Binding Factor , Chromatin/metabolism , Leukemia/genetics , Locus Control Region , Lymphoma/genetics , Mice , Nuclear Lamina/metabolism , Repressor Proteins/metabolism , T-Lymphocytes/metabolism , Thymus Gland/cytology , Thymus Gland/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL